The Chemical Synthesis of C-Ring Aryl Taxoids

K. C. Nicolaou,* Christopher F. Claiborne, Kumarapandian Paulvannan, Maarten H. D. Postema, and Rodney K. Guy

Abstract: We designed and targeted for synthesis the C-ring aryl taxoids 2a-c in order to develop methods for the construction of the taxoid skeleton and to test their cytotoxicity against tumor cells. Compound 2a was synthesized by a convergent route from hydrazone 5 and aldehyde 4. Key steps included a Shapiro reaction to join 5 and 4, a McMurry coupling to construct the 8-membered ring, a carbonate opening to introduce the 2-ben-

Keywords antitumor agents · carbocycles · drug research · taxol zoate group, and an allylic oxidation followed by side-chain attachment. A similar sequence led to compound 2c, whereas attempts to attain 2b were thwarted by the lability of the benzyl group during the carbonate opening. The biological activity of 2a and 2c against tumor cells was considerably less than that of taxol.

Introduction

Taxol (1, Figure 1), originally isolated from the Pacific Yew *Taxus brevifolia*,^[1] is an important new anticancer agent that has recently excited both the clinical and basic research communities. The past decade has seen its approval for the treatment of breast and ovarian cancer as well as its clinical evaluation for the management of skin, lung, and head and neck cancers.^[2] Taxol functions by interfering with the assembly/disassembly cycle of microtubules, crucial cellular proteins.^[3] In vivo, this effect causes the formation of stable bundles of nonfunctional microtubules within cells, arresting the cell cycle and killing the cells.^[4] Recently, scientists have expended much effort in attempting to understand the molecular basis of this effect.

Figure 1. Structures of taxol (1) and designed analogues 2a-c. Bn = benzyl; Bz = benzoyl.

[*] Prof. Dr. K. C. Nicolaou, C. F. Claiborne, Dr. K. Paulvannan, Dr. M. H. D. Postema, R. K. Guy Department of Chemistry and Skaggs Institute of Chemical Biology The Scripps Research Institute 10550 N. Torrey Pines Road, La Jolla, California 92037 (USA) Fax: Int. code + (619)784-2469 and Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093 (USA)

Chemists working on this problem have concentrated upon probing taxol's structure-activity relationships (SAR), primarily through degradative and semisynthetic methods.^[5] The researchers in this area have demonstrated two general principles. First, the so-called "southern" substituents, the phenyl isoserine side chain and the C2 benzoate,^[6] are crucial for activity. While either will tolerate subtle alteration, many substitutions or deletions significantly reduce cytotoxicity. On the other hand, the "northern" functionalities at C7,^[7] C9,^[8] and C10^[7a] can be deleted without compromising taxol's effect. Although these studies have produced a large body of information about taxol's SAR, they are necessarily limited in scope. The effects of the less easily manipulated functions such as the C1 hydroxyl, the methyl groups, and the oxetane moiety are less well understood. After resisting for many years, taxol yielded to two groups that published independent total syntheses in early 1994^[9, 10] and another one in 1995.^[11] These syntheses opened the door for exploration of these previously uncharted areas of taxol's SAR.

One of the key remaining questions about taxol's pharmacophore was the role of the oxetane (D) ring. Kingston's group had shown that cleaving open the oxetane produced a compound that lacked biological activity.^[12] However, the manipulations needed to open the oxetane also caused other structural perturbations that make interpreting this result difficult. One could hypothesize that the oxetane serves a purely structural role: its presence rigidifies the ABC-ring system to the extent that the taxane core is essentially conformationally inert. Alternatively, one could speculate that the lone pairs of electrons from the oxetane's oxygen might participate actively in hydrogen bonding with taxol's receptor.^[12a, 13] Desiring to probe these possibilities, we targeted for synthesis derivatives of the type shown in Figure 1 (2a-c) where taxol's C- and D-rings have been replaced by an aromatic moiety. Molecular modeling

FULL PAPER

indicated the possibility

of good overlap between

such structures and taxol

A few similar baccat-

in III derivatives had

been produced previous-

ly,^[14] but none con-

tained the crucial sidechain and C2 functional-

ities necessary for biological activity. Thus, we wanted to invent a

method that could install

both these features and

allow the generation of

any desired aromatic

substitution pattern. At

the outset of this project, a convergent strategy for the synthesis of taxol was

already in development

in these laboratories.^[9] It

was decided to follow a very similar strategy for

these derivatives (Fig-

ure 3). Thus, retrosyn-

thetic disconnection of the side chain through

and esterifications provided a baccatin III ana-

logue whose central B-

ring could be imagined

to arise from sequential

Shapiro^[16] and McMur-

ry^[17] reactions. This

known

oxidations^[15]

(see Figure 2).

Figure 2. Computer-generated models of taxol (A) and designed taxoids 2a (B) and 2c (C).

convergent route was perceived to allow high efficiency and flexibility with respect to C-ring substituents.^[18]

Abstract in Greek:

Τα $C-\delta \alpha \kappa \tau \upsilon \lambda \iota \upsilon \upsilon - \alpha \rho \upsilon \lambda \delta \tau \alpha \xi \delta \rho = 2a-c$. Περιληψη: σχεδιαστηκαν σαν συνθετικοι στοχοι καταλληλοι, αφ' ενος μεν, για την αναπτυξη μεθοδολογιας παρασκευης ταξοειδους σκελετου, αφ' ετερου δε, για τον ελεγχο της τοξικότητας τους εναντι καρκινικών κυττάρων. Η ενώση 2a συνετεθη συνδιαζοντας την υδραζονη 5 με την Τα βασικα σταδια περιελαμβαναν τη αλδευδη 4. συνενωση των 5 με 4 με αντιδραση Sapiro, την δημιουργια του 8-μελους δακτυλιου με συζευξη McMurry, το ανοιγμα του ανθρακικου εστερα για την εισαγωγη του 2-βενζουλεστερα και τελος, μια αλλυλικη οξειδωση, ακολουθουμενη απο προσαρτηση της πλευρικης αλυσιδας. Παρομοια πορεια οδηγησε στην ενωση 2c, ενω αναλογες προσπαθειες να προσεγγηθει η 2b εμποδιστηκαν λογω της ασταθειας της βενζυλομαδας στο σταδιο της διανοιξης του ανθρακικου εστερα. Η βιολογικη δραστικοτητα των 2a και 2c εναντι καρκινικων κυτταρων ηταν σημαντικα ασθενεστερη της Ταξολης (Taxol).

Figure 3. Strategy for the synthesis of C-ring aromatic analogues of taxol.

Results and Discussion

A. Synthesis of Aryl C-Ring Taxoid 2a: The synthesis of the aromatic C-ring analogue 2a was carried out as summarized in Schemes 1 and 2. 1,2-Benzenedimethanol (3, Scheme 1) was monosilylated with *t*BuPh₂SiCl and imidazole and thence oxidized with PCC to afford the requisite aldehyde 4 in 67% overall yield. The vinyl anion generated from hydrazone $5^{[9]}$ (Scheme 2) by the method of Chamberlin^[16b] was condensed

Scheme 1. Synthesis of the aromatic C-ring 4. Reagents and conditions: a) TPSCI (0.6 equiv), imidazole (2 equiv), CH_2Cl_2 , 25 °C, 2 h; PCC (1.5 equiv), CH_2Cl_2 , 25 °C, 1 h; 67% for two steps. TPSCI = *t*-butyldiphenylsilyl chloride; PCC = pyridinium chlorochromate.

Scheme 2. Synthesis of the ABC-ring system **12**. Reagents and conditions: a) *n*BuLi (2.1 equiv), THF, $-78 \rightarrow 25^{\circ}$ C, cool to 0° C and add 4 (1.1 equiv), 0.5 h, 86%; b) *f*BuOOH (1.1 equiv), [VO(acac)₂] (0.05 equiv), benzene, 25° C, 5 h, 90%; c) LiAlH₄ (6.6 equiv), Et₂O, reflux, 4 h; TBSCI (2.6 equiv), imidazole (2.7 equiv), CH₂Cl₂, 25° C, 1 h, 76%; d) CDI (10 equiv), CH₄CN, reflux, 2 h, 95%; c) TBAF (3 equiv), THF, 25° C, 2 h; f) TPAP (0.05 equiv), NMO (4 equiv), CH₂Cl₂, 25° C, 1 h, 89%; g) [TiCl₃(dme)_{1,3}] (7 equiv), Zn ·Cu (24 equiv), DME, reflux, 3 h, then add 11 by syringe pump, 1 h addition, then reflux additional 3 h, 53%. TBSCI = *i*butyldimethylsilyl chloride; CDI = carbonyldiimidazole; TBAF = tetra-*n*-butylammonium fluoride; TPAP = tetrapropylammonium perruthenate; NMO = *N*methylmorpholine *N*-oxide.

400 ------

with the TPS-protected benzaldehyde derivative 4 to give alcohol 6 (Scheme 2). Directed epoxidation (90%) by Sharpless' method^[19] followed by reductive opening of the resulting epoxide (7) with lithium aluminum hydride and reprotection of the primary alcohols (coincidentally desilylated during the reduction) with *t*BuMe₂SiCl and imidazole gave diol 8 in 75% overall yield. A conformation of the molecule perceived to be favorable for the upcoming McMurry reaction was then enforced by rigidifying the C1-C2 bond through formation of a cyclic carbonate. Thus, treatment of 8 with carbonyl diimidazole furnished carbonate 9 in 95% yield. Liberation of the alcohols with nucleophilic fluoride and oxidation with the Griffith-Ley catalyst (TPAP)^[20] and N-methylmorpholine N-oxide (NMO) provided dialdehyde 11 (89% overall yield) via diol 10. Exposure of this material to the McMurry reagent^[17] provided, diastereoselectively, a single cyclic diol (12) in racemic form (53% yield). The racemic compound 12 was taken through the synthesis to give two diastereomeric compounds 2a and 2a' upon coupling with enantiomerically pure β -lactam 17 (see Scheme 3). At this stage it was also possible to separate the two enantiomers of 12 by formation of their diastereomeric diesters with camphanyl chloride followed by chromatographic separation and cleavage of the chiral auxiliary. Enantiomerically pure diol 12 was characterized by X-ray crystallographic analysis (see ORTEP diagram, Figure 4).

Scheme 3. Synthesis of taxoid **2a**. Reagents and conditions: a) PhLi (6 equiv). THF, -78 °C, 0.5 h, 80%; b) Ac₂O (2.2 equiv), Et₃N (3 equiv), 4-DMAP (0.1 equiv), CH₂Cl₂, 25 °C, 1 h, 100%; c) PCC (46 equiv), Celite, NaOAc (20 equiv), benzene, reflux, 2 h, 55%; d) NaBH₄ (excess), MeOH, 0 °C, 20 min, 90% (ca. 8:1 mixture of α to β); e) NaN(SiMe₃)₂ (3.0 equiv), **17** (2.0 equiv), THF, -78 °C, 0.5 h, 73%; f) HF-pyr (2.0 equiv), THF, 25 °C, 2 h, 90%. 4-DMAP = 4-dimethylaminopyridine; TES = triethylsilyl.

Figure 4. ORTEP drawings of compounds 12 and 28.

Hydroxybenzoate 13 was formed in a regiospecific manner by treatment of (racemic) 12 with phenyllithium at -78 °C (80% yield) (Scheme 3). Protection of the hydroxyl groups as their acetyl esters (Ac₂O, Et₃N, 4-DMAP, leading to 14, 100%) followed by allylic oxidation with PCC gave enone 15 (55% yield). Reduction of 15 with sodium borohydride in methanol at 0 °C gave, stereoselectively, allylic alcohol 16 (90% total yield, ca. 8:1 α : β ratio). Finally, side-chain attachment by the Holton – Ojima method^[21, 22] and β -lactam 17^[22] [NaN(SiMe₃)₂, -78 to 0 °C] gave two diastereomeric products, 18 and 18′ (37% each), which were chromatographically separated. Desilylation of 18 with HF pyridine (HF ·pyr) furnished the targeted taxoid 2a (90% yield). Similar treatment of 18′ led to the diastereomeric taxoid 2a′.

Biological evaluation of **2a** provided interesting results. First, although its level of toxicity was considerably lower than that of taxol, 2a exhibited significant cytotoxicity against several cell lines, for example: $^{[23]}$ Ovcar-3, $IC_{50} = 2.80 \times 10^{-7}$ M (taxol = 6.2 × 10⁻¹⁰ M); HT-29, IC₅₀ = 1.29×10^{-7} M (taxol = 5.1×10^{-9} M); UCLA-P3, IC₅₀ = 2.96×10^{-7} M (taxol = 6.4×10^{-9} M). Secondly, the diastereometric compound 2a' (in which the side chain is of the correct absolute stereochemistry. but the taxoid framework is antipodal to that of taxol) showed insignificant cytotoxicity against the same cell lines. These results indicated that the major role of the oxetane might be conformational. Taking into consideration the current structural models for taxol,^[24] we tried to rationalize the attenuated cytotoxicity through examining missing structural components. We reasoned that perhaps the 4-acetyl group present in taxol might be serving as an anchor for the "hydrophobic collapse" of the C2 benzoyl and C3' phenyl rings.^[25] In order to test this hypothesis, we designed and targeted for chemical synthesis alkoxyaryl derivatives such as 2b and 2c, which we expected to provide an ethereal oxygen in approximately the same position as the 4-acyloxy substituent of taxol.

B. Attempted Synthesis of Benzyloxyaryl C-Ring Taxoid 2b: Formation of the required C-ring synthon for the construction of the benzyloxyaryl taxoid 2b was carried out by perbenzylation of 3-hydroxyphthalic acid (19) (K₂CO₃, BnBr) followed by reduction of the resulting benzyl esters with lithium aluminum hydride to give diol 20 in 75% overall yield (Scheme 4).

Scheme 4. Synthesis of aromatic C-ring 22. Reagents and conditions: a) BnBr (5.0 equiv), K_2CO_3 (7.0 equiv), DMF, 50 °C, 1.5 h, 75%; LiAlH₄ (4.9 equiv), THF, 25 °C, 1.0 h, 81%; b) TPSCI (1.1 equiv), imidazole (1.5 equiv), CH₂Cl₂, 25 °C, 0.5 h, 50% (after separation of isomers); c) PDC (2.0 equiv), 4Å mol. sieves. CH₂Cl₂, 25 °C, 1.5 h, 82%. BnBr = benzyl bromide; DMF = dimethylformamide; PDC = pyridinium dichromate.

Monoprotection of 20 with *tert*-butyldiphenylsilyl chloride, followed by oxidation of the correctly protected compound 21 (50% yield), provided the required aldehyde 22 (80% yield).

In a manner analogous to that described above, **22** was coupled to the vinyl anion derived from **5** to give allylic alcohol **23** in 86% yield (Scheme 5). Subsequent vanadium-directed^[19]

Scheme 5. Synthesis of the ABC-ring system **29**. Reagents and conditions: a) *n*BuLi (2.1 equiv), THF, $-78 \rightarrow 25$ °C, cool to 0 °C and add **22** (1.1 equiv), 0.5 h, 86%; b) *t*BuOOH (1.1 equiv), [VO(acac)₂] (0.05 equiv), benzene, 25 °C, 5 h, 85%; c) LiAlH₄ (6.6 equiv), Et₂O, reflux, 4 h; CDI (10 equiv), CH₃CN, reflux, 2 h, 63%; d) TPAP (0.05 equiv), NMO (4 equiv), CH₂Cl₂, 25 °C, 1 h, 71%; e) [TiCl₃-(dme)_{1.5}] (7 equiv), Zn ·Cu (24 equiv), DME, reflux, 3 h, then add aldehyde **27** by syringe pump, 1 h addition, then reflux for an additional 3 h, 39%; f) PhLi (6.0 equiv), HMPA (6.0 equiv), THF, -78 °C, 0.5 h, 80%. HMPA = hexamethylphosphoramide.

epoxidation of 23 yielded epoxide 24 (90% yield). Lithium aluminum hydride reduction of 24 afforded the corresponding tetraol (25) by concomitant desilylation. Instead of reprotecting the primary positions as had been done in the case of $6 \rightarrow 8$ (Scheme 2), we treated the tetraol 25 with excess carbonyl diimidazole to construct the carbonate ring as desired at C1 and C2 and allowed the primary hydroxyl groups to form transient urethanes, which were subsequently hydrolyzed selectively to afford 26. Oxidation of the resulting primary alcohols in 26 with a catalytic amount of TPAP and NMO afforded the required dialdehyde 27 (71% yield). Subjection of dialdehyde 27 to the McMurry coupling cyclization provided diol 28 in modest yield (33%). The stereochemistry of this compound (28) was proven by X-ray crystallographic analysis (see ORTEP diagram, Figure 4). Compound 28 proved rather unreactive towards phenyllithium. When forcing conditions (large excess of reagent and HMPA) were used, opening of the carbonate ring was accompanied by concomitant removal of the benzyl group to afford phenolic compound 29 (80% yield). Presumably, this debenzylation reaction proceeds through a single electron transfer (SET) reduction. Triol 29 was not amenable to further convenient manipulations, and the pursuit of 2b was, therefore, abandoned in favor of a more robust alkoxy group on the aromatic ring.

C. Synthesis of Methoxyaryl C-Ring Taxoid 2c: Starting with known intermediate 30^[26] (Scheme 6), the monoprotected intermediate 31 (*t*BuPh₂SiCl/imidazole, 45% yield) was oxidized

Scheme 6. Synthesis of aromatic C-ring **32**. Reagents and conditions: a) TPSCI (1.0 equiv), imidazole (1.5 equiv), CH_2Cl_2 , 25 °C, 1.0 h, 33 % (after separation of isomers); b) PDC (2.0 equiv), 4 Å mol. sieves, CH_2Cl_2 , 25 °C, 2 h, 86%.

with PDC in CH₂Cl₂, as with the analogous benzyl ether derivative **21**, to give the required aldehyde **32** (80%). This substrate (**32**) coupled cleanly with the A-ring vinyl anion generated from hydrazone **5** to give alcohol **33** (86% yield, Scheme 7). Epoxidation, followed by reduction, gave the expected tetraol, which was converted to carbonate **35** via epoxide **34** by means of the method described above for compound **26** (Scheme 5). Oxidation of diol **35** (TPAP/NMO, 89% yield) followed by ring closure under McMurry conditions furnished cyclic diol **37** in 33% yield. The stereochemistry of the diol system in this compound was based on NMR comparisons with **12** and **28**, whose structures were firmly established by X-ray crystallography.

Unlike benzyl ether 28, the methoxy derivative 37 reacted smoothly with phenyllithium under the previously described conditions to afford 38 in 80% yield (Scheme 8). Selective acetylation of the latter compound (38) proceeded cleanly to give diacetate 39 (100%), which was oxidized with PCC in the presence of NaOAc in refluxing benzene, furnishing enone 40 (55% yield). Reduction of the carbonyl group of the enone function in 40 with NaBH₄ in methanol at 0 °C resulted in the formation of a 1:1 mixture of α and β diastereoisomers (90%)

Scheme 7. Synthesis of the ABC-ring system **37**. Reagents and conditions: a) *n*BuLi (2.1 equiv), THF, $-78 \rightarrow 25$ °C, cool to 0 °C and add **32** (1.1 equiv), 0.5 h, 86%: b) *(BuOOH* (1.1 equiv), [VO(acac)₂] (0.05 equiv), benzene, 25 °C, 5 h, 90%; c) LiAlH₄ (6.6 equiv), Et₂O, reflux, 4 h, 75%; CDI (10 equiv), CH₃CN, reflux, 2 h, 73%; d) TPAP (0.05 equiv). NMO (4 equiv), CH₂Cl₂, 25 °C, 1 h, 89%; e) [TiCl₃(dme)_{1.3}] (7 equiv), Zn-Cu (24 equiv), DME, reflux, 3 h, then add aldehyde **36** by syringe pump, 1 h addition, then reflux for an additional 3 h, 33%.

Scheme 8. Synthesis of taxoid **2c**. Reagents and conditions: a) PhLi (6 equiv), THF, -78 °C, 0.5 h, 80%; b) Ac₂O (2.2 equiv), Et₃N (3 equiv), 4-DMAP (0.1 equiv), CH₃Cl₂, 25 °C. 1 h, 100%; c) PCC (46 equiv), Celite, NaOAc (20 equiv), benzene, reflux, 2 h, 55%; d) NaBH₄ (excess), MeOH, 0 °C, 20 min, 90% (ca. 1:1 mixture of a to β); e) NaN(SiMe₃)₂ (3.0 equiv), **17** (2.0 equiv), THF, -78 °C, 0.5 h, 73%; f) HF-pyr. (2.0 equiv), THF, 25 °C, 2 h, 90%.

total yield), from which the desired α isomer 41 was isolated by chromatography. The stereochemical outcome of this reduction is somewhat different from that of the corresponding enone leading to the non-oxygenated aromatic taxoid 2a (see 15 \rightarrow 16, ca. 8:1 α : β ratio, Scheme 3), suggesting a conformational effect exerted by the aromatic oxygen of 40. Racemic 41 was then converted to the two taxoids 2c and 2c', via intermediates 42 and 42', by attachment of the enantiomerically pure side chain through the Holton-Ojima^[21, 22] method with β -lactam 17 (Scheme 8). Preliminary biological studies with 2c and 2c' indicate low cytotoxicities as compared with taxol.

Conclusion

In this article, a synthetic route to simplified taxoids containing benzenoid systems instead of the CD-ring framework of taxol is described. Although preliminary biological data indicate considerable loss of cytotoxicity, the strategy may prove useful for the synthesis of other designed analogues of taxol that are currently unavailable from natural sources.

Experimental Procedure

General Techniques: Melting points were determined on a Uni-Melt (Thomas Scientific) apparatus and are uncorrected. NMR spectra were recorded on Bruker AMX-500, AMX-400, AM-300, or AM-250 instruments with Me_4Si or CHCl₃ (in CDCl₃) as internal standard: chemical shift signals (δ) are quoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), apt (apparent), b (broad), obs (obscured). IR spectra were recorded on Nicolet 205, Perkin Elmer 1600, or Galaxy 2020 series FT-IR spectrophotometers. Optical rotations were recorded with a Perkin Elmer 241 polarimeter. High-resolution mass spectra (HRMS) were recorded on a VG ZAB-ZSE mass spectrometer, under fast atom bombardment (FAB) or electrospray conditions, at the Scripps Research Institute.

All reactions were monitored by thin-layer chromatography (TLC) carried out on 250 mm Whatman silica gel plates (K 6 F-60 Å) with UV light, *p*-anisaldehyde, or 7% ethanolic phosphomolybdic acid and heat (200 °C) as developing agents. E. Merck silica gel (60, particle size 0.040-0.063 mm) was used for flash column chromatography. Dry tetrahydrofuran (THF) and ethyl ether were distilled from sodium/benzophenone, methylene chloride was distilled from calcium hydride, and benzene and toluene were distilled from sodium immediately prior to use. All reagents were obtained from Aldrich unless otherwise noted. Solvents used for workup, chromatography, and recrystallizations were reagent grade from Fisher Scientific and were used directly as received. All reactions were carried out under an argon atmosphere with freshly distilled solvents under anhydrous conditions, unless otherwise noted. Yields refer to chromatographically and spectroscopically (¹H NMR) homogenous materials, unless otherwise stated.

Aldehyde 4: tert-Butyldiphenylsilyl chloride (1.86 g, 6.77 mmol) was added in one portion to a methylene chloride solution of 3 (850 mg, 6.15 mmol) and imidazole (628 mg, 9.22 mmol) at room temperature, and the resulting solution was stirred for 2 h. The solution was then poured into ether (100 mL) and washed with saturated aqueous ammonium chloride (20 mL) and then brine (20 mL), dried with magnesium sulfate, filtered, and concentrated. The crude alcohol was oxidized in a fashion analogous to the oxidation of 10 to 11 (see below) with tetrapropylammonium perruthenate (20 mg, 57 mmmol), 4methylmorpholine N-oxide (865 mg, 7.38 mmol) and methylene chloride (10 mL) to give 4 as a clear oil (1.54 g, 67%); $R_f = 0.60$ (silica, 30% ether in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 2930, 2856, 1669, 1600, 1575, 1471,$ 1427, 1194, 1113, 1075, 822 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.13$ (s. 1 H, CHO), 7.85 (d, J = 7.5 Hz, 1 H, Ar), 7.81 (dd, J = 8.0, 2.4 Hz, 1 H, Ar), 7.69-7.65 (m, 4H, Ar), 7.64-7.60 (m, 1H, Ar), 7.47-7.34 (m, 7H, Ar), 5.19 (s, 2H, CH₂O), 1.10 (s, 9H, *t*BuSi); ¹³C NMR (125 MHz, CDCl₃): δ = 192.9, 143.7, 135.5, 134.0, 133.3, 132.7, 129.7, 127.8, 127.1, 126.9, 63.6, 26.8, 19.4.

Coupled product 6: n-Butyllithium (9.4 mL of a 1.6 M solution in hexanes, 15 mmol) was added dropwise to a solution of the hydrazone 5 (4.0 g, 7.11 mmol) in tetrahydrofuran (30 mL) at -78 °C. After complete addition, a color change from the initial yellow to a bright red was observed. The dry-ice bath was removed and the solution was allowed to warm to 25 °C (gas evolution was observed). The solution of the vinyl anion was then cooled back to 0 °C and aldehyde 4 (2.93 g, 7.82 mmol) was added dropwise as a solution in THF (5 mL). The mixture was stirred for 1 h at 0 °C and was then quenched with aqueous ammonium chloride (15 mL). Ether (100 mL) was added and the mixture was washed with aqueous ammonium chloride (10 mL) and brine (15 mL), and dried over magnesium sulfate. After filtration and concentration, the crude product was purified by flash chromatography (silica) to give 6 as a colorless oil (3.9 g, 86%). $R_f = 0.25$ (silica, 20%) ethyl acetate in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 3345$, 2956, 1472, 1428 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 7.87 - 7.78$ (m, 4H, Ar), 7.68 (m, 1H, Ar), 7.55-7.32 (m, 9 H, Ar), 5.92 (dd, J = 3.5, 3.0 Hz, 1 H, HC=C), 5.69 (s, 1 H, HCOH), 5.04 (d, J = 13.0 Hz, 1 H, CH₂O), 4.79 (d, J = 13.0 Hz, 1 H, CH₂OSi), 4.28 (s, 2H, CH₂O), 2.96 (s, 1H, OH), 2.81 (dd, J = 23.0, 3.0 Hz, 1 H. CH₂), 2.74 (dd, J = 23.0, 3.5 Hz, 1 H, CH₂), 1.87 (s, 3 H, CH₃), 1.40 (s, 3H, CH₃), 1.20 (s, 9H, tBuSi), 1.01 (s, 9H, tBuSi), 0.92 (s, 3H, CH₃), 0.19 (s, 3H, CH₃Si), 0.18 (s, 3H, CH₃Si); ¹³C NMR (125 MHz, CDCl₃): $\delta = 143.9, 141.6, 137.3, 135.6, 135.5, 132.9, 132.8, 129.8, 129.7, 129.0, 128.2,$ 127.8, 127.7, 127.5, 127.4, 127.3, 69.1, 64.5, 58.8, 38.3, 33.4, 27.9, 27.8, 26.8, 26.3, 26.0, 19.1, 18.3, -5.4; HRMS (FAB): calcd for C40H56O3Si2 $([M + Cs^+])$ 773.2822, found 773.2824.

Epoxide 7: tert-Butyl hydroperoxide (50 mL of a 3.0 M solution in 2,2,4trimethylpentane, 0.18 mmol) was added to a solution of the allylic alcohol 6 (100 mg, 0.16 mmol) and vanadium acetylacetonate ([VO(acac)₂]) (ca. 2 mg, cat.) in benzene (1 mL) at 0°C. The solution turned a deep red color and was allowed to warm to 23 °C and stirred for 2 h. The reaction was quenched by dilution with ether (3 mL), followed by addition of aqueous sodium thiosulfate (1 mL), and washed with aqueous sodium bicarbonate (1 mL) and then brine (1 mL). The resulting organic solution was dried over magnesium sulfate, concentrated, and purified by flash chromatography (silica, ether/petroleum ether) to yield 7 as a white foam (95 mg, 90%); $R_f = 0.30$ (silica, 20% ether in petroleum ether); FT-IR (film): $\hat{v}_{max} = 3385$, 2955, 1471, 1427, 1253 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.70$ (d, J = 7.0 Hz, 2H, Ar), 7.54 (d, J = 7.0 Hz, 1H, Ar), 7.46–7.23 (m, 11H, Ar), 5.28 (s, 1 H, HCOH), 4.90 (d, J = 13.5 Hz, 1 H, CH₂O), 4.84 (d, J = 13.5 Hz, 1 H, CH₂O), 4.12 (d, J = 11.0 Hz, 1 H, CH₂O), 3.09 (s, 1 H, H-epoxide), 2.76 (brs, 1 H, OH), 2.41 (d, J = 19.0 Hz, 1 H, CH₂C=C), 2.36 (d, J = 19.0 Hz, 1 H, CH₂C=C), 1.67 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 1.11 (s, 9H, tBuSi), 0.88 (s. 9H, /BuSi), 0.81 (s, 3H, CH₃), 0.05 (s, 6H, CH₃Si); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: $\delta = 138.2, 137.7, 135.6, 135.5, 133.8, 133.1, 133.0, 129.7,$ 127.9, 127.7, 127.2, 127.0, 126.3, 124.9, 66.2, 66.1, 63.4, 58.8, 58.1, 38.6, 31.7, 26.7, 25.9, 25.8, 22.0, 19.6, 19.2, 18.2, -5.5, -5.6; HRMS (FAB): calcd for $C_{40}H_{56}Si_2O_4$ ([M + Cs⁺]) 789.2772, found 789.2775.

Disilylether 8: Lithium aluminum hydride (5 mL, 1 M solution in ether, 5.0 mmol) was added dropwise to a solution of epoxide 7 (500 mg, 0.76 mmol) in dry ether (5 mL) at 25 °C. The solution was then refluxed for 4 h, cooled to 0 °C, and quenched with aqueous ammonium chloride (5 mL). The mixture was stirred for 2 h at 25 °C and then diluted with ether (20 mL), washed with aqueous ammonium chloride (10 mL), brine (5 mL), dried over magnesium sulfate, and concentrated. The crude tetraol was carried forward to the next step, where it was reprotected by dissolution in methylene chloride (15 mL) and treatment with t-butyldimethylsilyl chloride (300 mg, 2.0 mmol) while being stirred at 25 °C for 30 min. The mixture was quenched with aqueous sodium bicarbonate (5 mL), diluted with ether (15 mL), and dried over magnesium sulfate. The crude product was concentrated and purified by flash chromatography (silica, ether/petroleum ether) to give 8 as a white foam (375 mg, 75%); $R_f = 0.45$ (20% ether in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 3384, 2360 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_{3}); \delta = 7.33 \text{ (m, 2 H, Ar)},$ 7.26 (m, 2H, Ar), 4.98 (brs, 1H, HCOH), 4.80 (d, J = 12.5 Hz, 2H, CH2OSi), 3.06 (s, 2H, CH2OSi), 1.90 (m, 2H, CH2C=C), 1.69 (s, 3H, CH₃C=C), 1.55 (m, 2H, CH₂), 0.94 (s, 18H, tBuSi), 0.12 (s, 12H, CH₃Si); ¹³C NMR (125 MHz, CDCl₃): δ = 140.65, 140.6, 138.0, 135.7, 131.2, 127.5, 127.4, 75.9, 59.2, 43.6, 29.0, 27.8, 26.0, 25.9, 25.8, 23.9, 19.2, 18.2, -5.3, -5.4; HRMS (FAB): calcd for $C_{30}H_{54}Si_2O_4$ [M^+] 534.3561, found 534.3545.

Carbonate 9: Carbonyl diimidazole (1.4 g, 8.4 mmol) was added to a solution of diol 8 (450 mg, 0.84 mmol) in dry acetonitrile (10 mL), and the mixture was refluxed for 2 h. The solution was then diluted with petroleum ether (20 mL) and washed with 5% hydrochloric acid ($2 \times 5 \text{ mL}$), aqueous sodium bicarbonate (10 mL), and brine (10 mL), and dried over magnesium sulfate. Concentration and purification by flash chromatography (silica, ether/petroleum ether) gave 9 as a white foam (447 mg, 95%); $R_f = 0.6$ (silica, 20% ether in petroleum ether); FT-IR (film): $\tilde{\nu}_{max} = 2931$, 2857, 1803, 1456 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 7.43 - 7.25$ (m, 4 H, Ar), 5.95 (s, 1 H, HCOH), 4.77 (d, J = 13.0 Hz, 1H, CH₂O), 4.57 (d, J = 13.0 Hz, 1H, CH₂O), 4.28 (d, J = 11.5 Hz, 1 H, CH₂O), 4.19 (d, J = 11.5 Hz, 1 H, CH₂O), 1.98 (m, 1 H, CH₃C=C), 1.80 (m, 1H, CH₃C=C), 1.62 (s, 3H, CH₃C=C), 1.57 (m, 2H, CH₂), 1.34 (s, 3 H, CH₃), 1.27 (s, 3 H, CH₃), 0.92 (s, 9 H, *t*BuSi), 0.92 (s, 9 H. /BuSi), 0.11 (s, 3H, CH₃Si), 0.10 (s, 3H, CH₃Si); ¹³C NMR (125 MHz, $CDCl_3$: $\delta = 155.0, 138.9, 133.5, 129.0, 127.9, 127.7, 127.3, 90.1, 62.7, 59.2,$ 42.5, 28.7, 25.8, 25.7, 25.0, 19.1, 18.1, -5.2; HRMS (FAB): calcd for $C_{31}H_{52}O_5SI_2 [M + Na^+] 583.3251$, found 583.3250.

Diol 10: Tetra-n-butylammonium fluoride (4.8 mL, 1 M solution in THF, 4.8 mmol) was added to a solution of silyl ether 9 (900 mg, 1.6 mmol) in THF (20 mL) at 25 °C. The mixture was stirred for 1 h and quenched with excess aqueous ammonium chloride. Ether (20 mL) was added and the solution was washed with water (5 mL), brine (5 mL), and dried over magnesium sulfate. The combined aqueous layers were extracted with methylene chloride (10 mL) and added to the organic mixture, filtered, and concentrated. The crude product was purified by flash chromatography (silica, ethyl acetate/ petroleum ether) to afford diol 10 as a white foam (369 mg, 99%); $R_f = 0.25$ (60% ethyl acetate in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 3392$, 2974, 1781 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.38 - 7.26$ (m, 4H, Ar), 6.07 (s, 1 H, HCOCO₂), 4.63 (d, J = 12.5 Hz, 1 H, CH₂O), 4.48 (d, J = 12.5 Hz, 1 H, CH₂O), 4.21 (d, J = 11.5 Hz, 1 H, CH₂O), 4.10 (d, J = 11.5 Hz, 1 H, CH2O), 1.91 (m, 2H, CH3C=C), 1.63 (s, 3H, CH2C=C), 1.60 (m, 1H, CH₂), 1.33 (m, 1H, CH₂), 1.31 (s, 3H, CH₃), 1.20 (s, 3H, CH₃); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: $\delta = 155.3, 138.4, 134.0, 133.9, 133.7, 129.5, 129.4, 128.1,$ 127.8, 89.9, 78.4, 62.1, 58.1, 42.6, 28.6, 24.8, 23.9, 20.9, 19.1; HRMS (FAB): calcd for $C_{19}H_{24}O_5 [M + Na^+]$ 355.1521, found 355.1520.

Dialdehyde 11: Tetrapropylammonium perruthenate (14 mg, 0.04 mmol) was added to a stirred solution of diol 10 (266 mg, 0.801 mmol) and 4-methylmorpholine N-oxide (375 mg, 3.20 mmol) in methylene chloride (10 mL) at 23 °C. The solution was stirred for 2 h, diluted with ether (5 mL), filtered through silica gel, and concentrated to give the crude dialdehyde. Purification was carried out by flash chromatography (silica, ethyl acetate/petroleum ether) to afford 11 as a white solid (712 mg, 89%); m.p. 162 °C (from ether/hexanes); $R_{f} = 0.6$ (silica, 60% ethyl acetate in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 2978, 1798, 1701, 1671 \text{ cm}^{-1}; {}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}): \delta = 10.08$ (s, 1 H. CHO), 10.04 (s, 1 H, CHO), 7.87 (dd, J = 7.6, 1.5 Hz, 1 H, Ar), 7.72 (m, 1 H, Ar), 7.66 (m, 1 H, Ar), 7.51 (d, J = 7.8 Hz, 1 H, Ar), 6.81 (s, 1 H, HCOCO₂), 2.36 (m, 1H, CH₂C=C), 2.02 (s, 3H, CH₃C=C), 1.85 (m, 1H. CH₂C=C), 1.52 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.48 (m, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃): $\delta = 192.4, 191.5, 154.7, 153.6, 137.1, 136.4, 135.5.$ 134.0, 133.6, 129.7, 128.9, 90.7, 76.3, 41.5, 31.5, 24.5, 23.4, 19.7, 8.5; HRMS (FAB): calcd for $C_{19}H_{20}O_5 [M + Na^+]$ 351.1205, found 351.1210.

McMurry product 12: 1,2-dimethyloxyethane (DME; 30 mL) was added to a flask containing [TiCl₃(dme)_{1.5}] (900 mg, 3.1 mmol) and Zn-Cu couple (930 mg, 7.2 mmol) at 23 $^{\circ}\mathrm{C}$ (reagents were weighed out under inert atmosphere). The solution was heated to reflux with vigorous stirring for 3.5 h and then cooled to 55 °C. Triethylamine (100 µL, 0.72 mmol) was added, followed by a solution of dialdehyde 11 (100 mg, 0.3 mmol in 30 mL DME) from a syringe pump over 1.5 h. After complete addition, the solution was maintained at 55 °C for 2 h, cooled to 0 °C, and poured into a solution of aqueous potassium carbonate (5%, 100 mL) kept at 0 °C. After stirring for 10 min the mixture was allowed to warm to ambient temperature, diluted with ether (100 mL), and filtered through Celite. The organic phase was washed with brine (10 mL), dried over magnesium sulfate, and concentrated. Purification by flash chromatography (silica, 20% ethyl acetate in benzene) afforded 12 (53 mg, 53%) as a crystalline solid (from methylene chloride/hexane), m.p. 251 °C (decomp.); $R_f = 0.20$ (silica, ether); FT-IR (film): $\tilde{v}_{max} = 3426, 2937, 1800, 1457, 1026 \text{ cm}^{-1}$; ¹H NMR (500 MHz, [D₆]acetone): $\delta = 7.82$ (m, 1 H, Ar), 7.47 (m, 1 H, Ar), 7.30 (m, 2 H, Ar), 5.91 (s, 1 H, HCOCO₂), 5.14 (dd, J = 8.5, 3.0 Hz, HCOH), 4.83 (d, J = 3.0 Hz, 1H, OH), 4.64 (dd, J = 8.5,

3.0 Hz, 1 H, *H*COH), 4.41 (d, *J* = 3.0 Hz, 1 H, OH), 2.37 (m, 1 H, CH₂C=C), 2.29 (m, 1 H, CH₂C=C), 1.89 (m, 1 H, CH₂), 1.72 (s, 3 H, CH₃C=C), 1.19 (m, 1 H, CH₂), 1.17 (s, 3 H, CH₃), 0.79 (3 H, CH₃); ¹³C NMR (125 MHz, [D₆]acetone): δ = 154.2, 142.0, 138.0, 133.2, 132.9, 128.2, 127.5, 126.4, 124.1, 93.0, 80.3, 79.2, 75.2, 40.6, 29.5, 23.5, 21.5, 21.1; HRMS (FAB): calcd for C₁₉H₂₂O₅ [*M* + Na⁺] 353.1365, found 353.1360.

Benzoate diol 13: Phenyllithium (600 µL, 1.2 mmol of a 2 M solution in cyclohexanc ether) was added to a stirred solution of diol 12 (65 mg, 0.197 mmol) in THF (17 mL) at -78 °C. The mixture was stirred for 30 min and was then quenched at -78 °C with aqueous ammonium chloride (15 mL). The solution was diluted with ether (50 mL), washed with brine (10 mL), dried over magnesium sulfate, and concentrated. The residue was purified by flash chromatography (silica, ethyl acetate/petroleum ether) to provide 13 as a white solid (64 mg, 80%); $R_c = 0.5$ (silica, 50% ethyl acetate in petroleum ether); FT-1R (film): $\tilde{v}_{max} = 3456$, 2945, 1704, 1450, 1283 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.05 \text{ (m, 1 H, Ar)}, 7.58 - 7.41 \text{ (m, 4 H, Ar)}, 7.15 \text{ (m, 1 H, Ar)}, 7.58 - 7.41 \text{ (m, 2 H, Ar)}, 7.15 \text{ (m, 2 H, Ar)$ 2H, Ar), 6.31 (s, 1H, HCOBz), 5.41 (d, J = 9.0 Hz, 1H, HCOH), 4.50 (d, J = 9.0 Hz, 1 H, HCOH), 2.41 (m, 1 H, CH₂C=C), 2.28 (m, 1 H, CH₂C=C), 1.84 (m, 1 H, CH₂), 1.73 (s, 3 H, CH₃C=C), 1.36 (s, 1 H, CH₂), 1.15 (s, 3 H, CH₃), 0.62 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 165.9, 139.6, 138.5, 138.1, 133.2, 131.4, 129.8, 129.5, 128.4, 126.9, 126.5, 124.4, 123.8, 79.7, 79.2, 74.3, 74.1, 41.5, 29.8, 27.2, 26.1, 20.3, 19.6, 14.1; HRMS (FAB): calcd for $C_{25}H_{28}O_5 [M + Na^+] 431.1834$, found 431.1830.

Diacetate 14: Acetic anhydride (26 µL, 0.27 mmol) was added to a stirred solution of diol 13 (50 mg, 0.123 mmol), triethylamine (51 µL, 0.369 mmol), and 4-dimethylaminopyridine (1.5 mg, 0.012 mmol) in methylene chloride (20 mL) at 0 °C. The solution was allowed to warm to 23 °C and stirred for 45 min before quenching with aqueous sodium bicarbonate (10 mL). The reaction mixture was then diluted with ether (10 mL), washed with water (5 mL) and then brine (5 mL), and dried over magnesium sulfate. After concentration, trace impurities were removed by filtration through silica gel (as a solution in 60% ethyl acetate in petroleum ether); this yielded a white foam; $R_f = 0.5$ (silica, 60% ethyl acetate in petroleum ether); FT-IR (film): $\tilde{\nu}_{max} = 3526, 2995, 1733 \text{ cm}^{-1}; {}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}): \delta = 8.10 \text{ (m},$ 2H, Ar), 7.53 (m, 5H, Ar), 7.20 (m, 2H, Ar), 6.66 (d, J = 10 Hz, 1H, HCOAc), 6.429 (s, 1 H, HCOBz), 5.768 (d, J = 10.0 Hz, 1 H, HCOAc), 2.51 (br s, 1 H, OH), 2.41 (m, 1 H, CH₂C=C), 2.325 (m, 1 H, CH₂C=C), 2.20 (s, 3H, OAc), 2.13 (s, 3H, OAc), 1.85 (m, 1H, CH₂), 1.73 (s, 3H, CH₃C=C), 1.37 (m, 1H, CH₂), 1.09 (s, 3H, CH₃), 0.83 (s, 3H, CH₃); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: $\delta = 170.3, 169.5, 165.7, 140.8, 138.9, 136.0, 133.2, 129.8,$ 129.6, 128.6, 128.4, 128.2, 126.7, 124.7, 124.3, 79.2, 77.5, 74.1, 72.2, 41.4, 29.8, 27.3, 26.1, 21.1, 20.9, 20.2, 19.6; HRMS (FAB): calcd for C₂₉H₃₂O₇ $[M + Na^+]$ 515.2024, found 515.2050.

Enone 15: To a dry flask were added pyridinium chlorochromate (1.0 g, 4.64 mmol; freshly prepared is best), Celite (1 g), anhydrous sodium acetate (700 mg, 8.53 mmol), benzene (25 mL), and the diacetate 14 (50 mg, 0.1 mmol). The solution was heated to 70 °C and the reaction progress was carefully monitored by thin-layer chromatography (1-2.5 h for completion). The reaction mixture was cooled to 23 °C, diluted with ether (25 mL), and filtered through Florisil. Concentration and purification of the residue by flash chromatography (silica, ether/petroleum ether) gave 15 as a colorless solid (28 mg, 55%); $R_f = 0.6$ (silica, 80% ether in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 3502, 2968, 2926, 1749, 1674 \text{ cm}^{-1}$; ¹H NMR (500 MHz, CD-Cl₃): $\delta = 8.09$ (m, 2H, Ar), 7.64 7.36 (m, 5H, Ar), 7.21 (m, 2H, Ar), 6.81 (d, J = 10.0 Hz, 1 H, HCOAc), 6.55 (s, 1 H, HCOBz), 5.81 (d, J = 10.0 Hz, 1 H, HCOAc), 3.15 (d, J = 19.5 Hz, 1 H, CH₃), 2.77 (d, J = 19.5, 1 H, CH₂), 2.24 (s, 3H, OAc), 2.20, (s, 3H, OAc), 1.82 (s, 3H, CH₃C=C), 1.22 (s, 3H, CH₃), 1.08 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 197.6, 170.2, 169.4, 165.7, 150.3, 140.3, 138.1, 134.9, 133.7, 129.7, 129.3, 128.8, 128.7, 127.8, 125.3, 124.4, 77.9, 77.5, 73.5, 70.9, 42.9, 42.8, 32.1, 21.0, 20.9, 19.3, 12.7; HRMS (FAB): calcd for $C_{29}H_{30}O_{38}$ [M + Na⁺] 529.1838, found 529.1840.

Alcohol 16: Sodium borohydride (excess) was added portionwise to a stirred solution of ketone 15 (50 mg, 0.099 mmol) in methanol (5 mL) at 0 °C, and the resulting mixture was stirred for 45 min and then quenched by dilution with ether (20 mL) and slow addition of aqueous ammonium chloride (5 mL). The aqueous phase was extracted with ether (2×5 mL), and the combined organic layers were washed with brine (5 mL), dried over magnesium sulfate,

and concentrated. The crude product was found to be a 8:1 mixture of epimers (¹H NMR) in favor of the α isomer. Purification by preparative thin-layer chromatography (20% ethyl acetate in benzene) gave alcohol **16** (42 mg. 84%) as a colorless solid; $R_f = 0.4$ (silica, 30% ethyl acetate in petroleum ether); FT-IR (film): $\tilde{v}_{max} = 3509$, 2926, 1724 cm⁻¹: ¹H NMR (CDCl₃): $\delta = 8.15$ (m, 2H, Ar), 7.20–7.70 (m, 7H, Ar), 6.69 (d, J = 10.0 Hz, 1H, HCOAc), 6.47 (s, 1H, HCOBz), 5.81 (d, J = 10.0 Hz, 1H, HCOAc), 4.33 (m, 1H, HCOH), 2.58 (dd, J = 19.5, 10.0 Hz, 1H, CH₂), 2.27 (brs, 1H, OH), 2.42 (dd, J = 19.5, 3.5 Hz, 1H, CH₂), 2.21 (s, 3H, OAc), 2.14 (s, 3H, OAc), 1.75 (s, 3H, CH₃C=C), 1.09 (s, 3H, CH₃), 1.03 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.2$, 169.4, 165.5, 142.8, 140.1, 136.5, 133.4, 130.6, 129.6, 129.5, 128.5, 127.8, 127.6, 125.7, 124.1, 77.1, 76.6, 74.05, 71.82, 67.62, 39.7, 29.6, 27.5, 21.0, 20.8, 19.8, 15.3; HRMS (FAB): calcd for C_{2.0}H_{3.2}O₈ [$M + H^+$] 509.2175, found 509.2175.

Coupled products 18 and 18': Sodium bis(trimethylsilyl)amide (236 µL, 1 M solution in THF, 0.236 mmol) was added dropwise to a stirring mixture of alcohol **16** (racemic, 40 mg, 0.079 mmol) and the β -lactam **17** (optically pure, 60.0 mg, 0.157 mmol) in THF (2 mL) at -78 °C. The reaction mixture was stirred for 20 min and was then quenched with aqueous ammonium chloride at -78 °C. The biphasic solution was separated and the organic layer was washed with aqueous ammonium chloride (1 mL) and brine (1 mL), and dried over magnesium sulfate. After filtration and concentration, the material was purified by preparative thin-layer chromatography (silica, 50% ether in hexane) to yield the two expected diastereomers (**18**: 19 mg, 37%).

Analysis of 18: Colorless solid; $R_f = 0.45$ (silica, 80% ether in petroleum ether); $[\alpha]_D^{22} = 26.67$ (*c* 1.5, CHCl₃); FT-IR (film): $\tilde{v}_{max} = 3429$, 3956, 1747, 1668 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); $\delta = 8.27$ (d, J = 8.0 Hz, 2 H, Ar), 8.13 (d, J = 8.0 Hz, 1 H, Ar), 7.87 (m, 2 H, Ar), 7.60–7.20 (m, 14 H, Ar), 7.14 (d, J = 9.0 Hz, 1 H, NH), 6.73 (d, J = 10.0 Hz, 1 H, HCOAc), 6.43 (s, 1 H, HCOBz), 5.81 (d, J = 10.0 Hz, 2 H, HCOAc and HCNHBz), 5.64 (m, 1 H, HCCE), 4.33 (d, J = 2.0 Hz, 1 H, HCOTES), 2.58 (s, 1 H, OH), 2.41 (m, 2 H, CH₂), 2.20 (s, 3 H, OAc), 2.13 (s, 3 H, OAc), 1.73 (s, 3 H, CH₃C=C), 1.07 (s, 3 H, CH₃), 0.98 (s, 3 H, CH₃), 0.71 (t, J = 8.0 Hz, 9 H, CH_3CH_2Si), 0.30 (m, 6 H, CH₃CH₂Si); ¹³C NMR (125 MHz, CDCl₃); $\delta = 170.4$, 170.2, 169.4, 167.0, 165.8, 139.4, 128.0, 127.6, 127.1, 127.05, 127.0, 126.2, 124.6, 77.2, 77.7, 75.1, 74.2, 71.9, 70.4, 55.5, 42.2, 35.8, 27.0, 21.1, 21.0, 20.0, 15.3, 6.4, 4.2; HRMS (FAB): calcd for C₅₁H₅₉O₁₁NSi [M +Cs⁺] 1022.2912, found 1022.2930.

Analysis of 18': Colorless solid; $R_f = 0.32$ (silica, 80% ether in petroleum ether); $[\alpha]_{D}^{22} = -24.43$ (c 1.4, CHCl₃); FT-IR (film): $\tilde{v}_{max} = 3422, 2955.1$, 1746, 1663, 1025 cm⁻¹; ¹H NMR (500 MHz, CDCI₃): $\delta = 8.07$ (d, J = 7.0 Hz, 2H, Ar), 8.69 (d, J = 7.0 Hz, 2H, Ar), 7.75 -7.25 (m, 15H, Ar), 7.09 (d, J = 8.5 Hz, 1 H, NH), 6.67 (d, J = 10.0 Hz, 1 H, HCOAc), 6.46 (s, 1 H, HCOBz), 5.81 (d, J = 10.0 Hz, 1 H, HCOAc), 5.54 (m, 1 H, HCC=C), 5.18 (d, J = 8.5 Hz, 1 H, HCNHBz), 4.37 (d, J = 1.5 Hz, 1 H, HCOTES), 2.61 (s, 1 H, OH), 2.56 (dd, J = 10.3, 6.4 Hz, 1 H, CH₂), 2.30 (dd, J = 10.3, 2.7 Hz, 1 H, CH₂), 2.20 (s, 3 H, OAc), 2.10 (s, 3 H, OAc), 1.74 (s, 3 H, CH₃C=C), 1.05 $(s, 3H, CH_3), 1.00 (s, 3H, CH_3), 0.84 (t, J = 8.0 Hz, 9H, CH_3CH_2Si), 0.47$ (m, 6 H, CH₃CH₂Si); ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 170.1, 169.5, 166.5, 165.6, 139.1, 138.9, 138.7, 136.1, 134.2, 133.5, 132.1, 131.6, 129.6, 129.0, 128.7, 128.6, 128.5, 127.7, 127.6, 127.2, 127.0, 126.4, 125.5, 125.3, 76.9, 76.7, 75.3, 74.3, 71.9, 70.6, 55.9, 42.0, 36.6, 27.6, 21.0, 20.9, 19.8, 15.6, 6.5, 4.3; HRMS (FAB): calcd for $C_{51}H_{59}O_{11}NSi [M + Cs^+]$ 1022.2912, found 1022.2935.

Taxoids 2 a and 2a': HF · pyr (150 μ L) was added to a stirred solution of silyl ether **18** (19 mg, 0.021 mmol; **18'** for taxoid **2a'**) in THF (1 mL) (polyethylenc vessel). The reaction mixture was stirred for 30 min and then quenched by being first diluted with ether (3 mL) and then poured into stirred aqueous sodium bicarbonate (5 mL) and allowed to react for 10 min. The organic layer was washed with aqueous sodium bicarbonate (5 mL) and brine (2 mL), and dried over magnesium sulfate. After filtration and concentration, the crude compound was purified by column chromatography (silica, ether) to yield the pure alcohol **2a** (**2a'**).

Properties of 2 a: Yield 14 mg, 89%; colorless solid; $R_f = 0.43$ (silica. ether); $[\alpha]_D^{22} = 52.33$ (c 0.30, CHCl₃); FT-IR (film): $\hat{v}_{max} = 3729$, 3417, 1654, 1515, 1027 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.30$ (d, J = 8.0 Hz, 2H, Ar), 8.18 (d, J = 8.0 Hz, 1H, Ar), 7.84 (d, J = 8.0 Hz, 2H, Ar), 7.60 - 7.20 (m,

14H, Ar), 6.99 (d, J = 9.5 Hz, 1H, NH), 6.73 (d, J = 10.0 Hz, 1H, HCOAc), 6.45 (s, 1H, HCOBz), 5.88 (d, J = 9.5 Hz, 1H, HCNHBz), 5.79 (d, J = 10.0 Hz, 1H, HCOAc), 5.72 (m, 1H, HCC=C), 4.47 (s, 1H, HCOH), 3.26 (brs. 1H, OH), 2.66 (s, 1H, OH), 2.61 (dd, J = 15.5, 4.0 Hz, 1H, CH₂), 2.38 (dd, J = 15.5, 10.5 Hz, 1H, CH₂), 2.20 (s, 3H, OAc), 2.13 (s, 3H, OAc), 1.75 (s, 3H, CH₃C=C), 1.05 (s, 3H, CH₃), 0.91 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 172.0$, 170.4, 169.4, 166.9, 139.3, 138.9, 137.8, 135.5, 134.4, 133.3, 132.5, 131.9, 130.2, 129.6, 128.9, 128.8, 128.5, 128.5, 127.9, 126.8, 127.2, 127.1, 127.0, 126.6, 124.7, 77.1, 76.7, 74.2, 73.2, 71.9, 71.7, 54.0, 42.4, 35.4, 27.2, 21.1, 20.9, 20.0, 15.2; HRMS (FAB): calcd for C_{4.5}H_{4.5}O_{1.1}N [$M + Cs^+$] 908.2047, found 908.2058.

Properties of 2 a': Yield 85%; colorless solid; $R_f = 0.32$ (silica, ether); $[\alpha]_D^{22} = -16.00 (c 0.50, CHCl_3)$; FT-IR (film): $\tilde{v}_{max} = 3423, 2929, 1737, 1658, 1237 cm⁻¹; ¹H NMR (500 MHz, CDCl_3): <math>\delta = 8.07$ (d, J = 8.0 Hz, 2H, Ar), 7.69 (d, J = 8.0 Hz, 2H, Ar), 7.65–7.20 (band, 15H, Ar), 7.00 (d, J = 9.0 Hz, 1H, NH), 6.66 (d, J = 10.0 Hz, 1H, HCOAc), 6.42 (s, 1H, HCOBz), 5.77 (d, J = 10.0 Hz, 1H, HCOAc), 5.59 (brd, J = 8.0 Hz, 1H, HCC=C), 5.33 (dd, J = 9.0 Hz, 1H, HCOHBz), 4.50 (dd, J = 4.0 Hz, 1H, HCOH), 3.16 (d, J = 4.0 Hz, 1H, OH), 2.72 (s, 1H, OH), 2.18 (s, 3H, OAc), 2.11 (s, 3H, CH₂), 2.22 (dd, J = 15.0, 3.5 Hz, 1H, CH₂), 2.18 (s, 3H, OAc), 2.11 (s, 3H, OAc), 1.73 (s, 3H, CH₃C=C), 1.04 (s, 3H, CH₃), 0.98 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.6, 170.2, 169.5, 165.8, 38.8, 138.7, 138.0, 127.3, 127.0, 126.9, 125.5, 125.2, 76.9, 76.8, 74.2, 73.5, 71.97, 71.9, 54.8, 42.1, 36.4, 27.6, 21.1, 21.0, 19.8, 15.6; HRMS (FAB): calcd for C₄₅H₄₅O₁₁ [$ *M*+ Cs⁺] 908.2047, found 908.2038.

Diol 20: Benzyl bromide (105 g, 618 mmol) was added to a solution of the diacid 19 (23 g, 123 mmol) and potassium carbonate (119 g, 865 mmol) in dimethylformamide (400 mL) at 25 °C and the solution was then heated to 50 °C for 1.5 h. The dimethylformamide was removed in vacuo and the resulting residue was diluted with ether (500 mL) and washed with water $(3\times100\mbox{ mL})$ and brine (100 mL), and dried over magnesium sulfate. After filtration and concentration, the residue was redissolved in ether (800 mL) and cooled to - 78 °C. Lithium aluminum hydride (23 g, 600 mmol) was added portionwise and the mixture was allowed to react for 1 h. The mixture was carefully quenched at -78 °C by dilution with ether (500 mL), dropwise addition of water (23 mL), and being warmed to 0 °C and stirred for 30 min. Aqueous sodium hydroxide (3 N, 23 mL) was then added slowly at that temperature, and the reaction mixture was stirred for 1 h at ambient temperature. Water (69 mL) was then added slowly with vigorous stirring; the reaction was allowed to continue for 20 min. The precipitate formed was filtered through silica and the resulting solution was concentrated. Purification (silica, ether/ hexane) was carried out by column chromatography to afford compound 20 as a colorless oil (19 g, 73%); $R_c = 0.20$ (60% ether in hexane); IR (film): $\tilde{v}_{max} = 3337, 2881, 1586, 1459, 1263 \text{ cm}^{-1}; {}^{1}\text{H} \text{NMR} (500 \text{ MHz}, \text{CDCl}_3):$ $\delta = 7.41$ (m, 3 H, Ar), 7.35 (m, 1 H, Ar), 7.27 (m, 1 H, Ar), 6.99 (m, 2 H, Ar), 5.17 (s, 2H, CH₂O), 4.89 (d, J = 6.0 Hz, 2H, CH₂O), 4.73 (d, J = 6.0 Hz, 2H, CH₂O), 2.89 (brs, 1H, OH), 2.78 (brs, 1H, OH); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 156.8, 141.3, 136.7, 129.1, 128.5, 127.9, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 112.3, 70.5, 127.2, 122.1, 128.5, 127.2, 128.5, 127.2, 128.5, 127.2, 128.5, 127.2, 128.5, 1$ 63.8, 56.1; HRMS (FAB): calcd for $C_{15}H_{16}O_3$ [M + Cs⁺] 377.0154, found 377.0148.

Monosilyl ether 21: tert-Butyldiphenylsilyl chloride (6.8 g, 24.8 mmol) was added to a solution of the diol 20 (5.5 g, 22.5 mmol) and imidazole (2.3 g, 33.8 mmol) in methylene chloride (200 mL) at 0 °C. The reaction mixture was warmed to 25 °C, stirred for 30 min, worked up by addition of ether (200 mL), and washed with H₂O (50 mL) and brine (50 mL). The organic solution was then dried over magnesium sulfate and filtered. Column chromatography (silica, ether/hexane) permitted separation of the mixture (diol and the two monosilyl ethers) to yield the desired monosilyl ether 21 (5.3 g, 49%). Colorless solid, m.p. 54–56 °C (from ether/hexane); $R_f = 0.45$ (50%) ether in hexane); IR (film): $\tilde{v}_{max} = 3474$, 3067, 2932, 2858, 2360 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.71$ (m, 4H, Ar), 74.6 (m, 4H, Ar), 7.41 (m, 6H, Ar), 7.35 (m, 1H, Ar), 7.22 (m, 1H, Ar), 6.96 (m, 1H, Ar), 6.88 (m, 1 H, Ar), 5.15 (s, 2H, CH₂O), 4.85 (d, J = 6.5 Hz, 2H, CH₂O), 4.81 (s, 2H, CH_2O), 3.00 (t. J = 6.5 Hz, 1 H, OH), 1.07 (s. 9 H, *t*BuSi); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$; $\delta = 156.9, 140.0, 136.8, 135.6, 132.8, 129.8, 128.6, 128.1, 128.1, 128$ 127.9, 127.7, 127.2, 121.3, 111.8, 70.4, 64.8, 56.6, 26.7; HRMS (FAB): calcd for $C_{31}H_{34}O_3Si_1 [M + Na^+] 505.2175$, found 505.2173.

C-Ring Aldehyde 22: Pyridinium dichromate (8.11 g, 21.6 mmol) was added to a suspension of alcohol 21 (5.2 g, 10.8 mmol) and 4 Å molecular sieves

(15 g) in methylene chloride (100 mL) at 0 °C, and the resulting mixture was allowed to reach ambient temperature and stirred for 1.5 h. The reaction mixture was filtered through a pad of silica gel (washed with 200 mL of ether), concentrated, and purified by flash chromatography (silica, ether/hexane) to give the aldehyde **22** (4.2 g, 82 %) as a white solid; m.p. 99–101 °C (from ether/hexane); $R_f = 0.70$ (80% ether in hexane); IR (film): $\tilde{v}_{max} = 3068$, 2932, 1980, 1585, 1467 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.20$ (s, 1H, CHO), 7.73 (m, 2H, Ar), 7.69 (m, 2H, Ar), 7.60 (m, 2H, Ar), 7.38 (m, 11 H, Ar), 7.00 (m, 1H, Ar), 5.20 (s, 2H, CH₂O), 5.18 (s, 2H, CH₂O), 1.14 (s, 9H, *t*BuSi); ¹³C NMR (125 MHz, CDCl₃): $\delta = 191.6$, 162.0, 146.0, 135.4, 135.2, 133.4, 129.5, 128.6, 128.2, 127.6, 127.2, 121.2, 118.3, 110.9 70.6, 64.1, 26.8, 19.4; HRMS (FAB): calcd for C₃₁H₃₂O₃Si [$M + H^+$]: 481.2199, found 481.2199.

Coupled product 23: Same procedure as for the preparation of compound **6** (same scale, 86% yield); white foam; $R_f = 0.41$ (silica, 20% ether in hexane); IR (film): $\tilde{v}_{max} = 3549$, 2953, 2858, 1585, 1463, 1380 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 87.68$ (m, 4H, Ar), 7.38 (m, 11 H, Ar), 7.25 (dd, J = 8.0, 8.0 Hz, 1H, Ar), 7.11 (d, J = 8.0 Hz, 1H, Ar), 6.97 (d, J = 8.0 Hz, 1H, Ar), 5.75 (d, J = 10.0 Hz, 1H, HCOH), 5.34 (s, 1H, HC=C), 5.14 (s, 2H, CH₂O), 4.77 (s, 2H, CH₂O), 4.21 (s, 2H, CH₂-O), 4.15 (d, J = 10.0 Hz, 1H, HCOH), 2.57 (d, J = 22.0 Hz, 1H, CH₂), 2.40 (d, J = 22.0 Hz, 1H, CH₂), 1.74 (s, 3H, CH₃-C=C), 1.29 (s, 3H, CH₃), 1.15 (s, 3H, CH₃), 1.09 (s, 9H, *t*BuSi), 0.94 (s, 9H, *t*BuSi), 0.12 (s, 6H, (CH₃)₂Si); HRMS (FAB): calcd for C₄₇H₆₂O₄Si₂ [M + Na⁺] 769.4084, found 769.4070.

Epoxide 24: Same procedure as for the preparation of compound 7 (same scale, 85%); white foam; $R_f = 0.29$ (silica, 20% ether in hexane); IR (film): $\tilde{v}_{max} = 3517, 2932, 2858, 1584, 1465, 1383, 1254 cm^{-1}; {}^{1}H NMR (500 MHz, CDCl_3): <math>\delta = 7.68$ (m, 4H, Ar), 7.48 (m, 2H, Ar), 7.42 (m, 2H, Ar), 7.37 (m, 7H, Ar), 7.32 (m, 1H, Ar), 7.24 (m, 1H, Ar), 6.92 (m, 1H, Ar), 5.63 (d, J = 8.5 Hz, 1H, HCOH), 5.10 (dd, J = 20.5, 11.5 Hz, 2H, CH₂O), 4.89 (d, J = 13.0 Hz, 1H, CH₂O), 4.74 (d, J = 13.0 Hz, 1H, CH₂O), 4.29 (d, J = 8.0 Hz, 1H, OH), 4.10 (dd, J = 19.0, 11.0 Hz, 2H, CH₂O), 2.45 (br s, 1H, HCO), 2.12 (d, J = 19.0 Hz, 1H, CH₂), 1.99 (s, 3H, CH₃), 1.09 (s, 9H, *r*BuSi), 0.90 (s, 9H, *r*BuSi), 0.07 (s, 3H, CH₃Si), 100 (s, 3H, CH₃Si); 1³C NMR (125 MHz, CDCl₃): $\delta = 157.2, 140.1, 136.7, 135.5, 135.4, 134.3, 132.9, 129.7, 128.5, 128.4, 128.0, 127.7, 127.5, 125.4, 124.7, 120.5, 112.0, 71.1, 69.4, 65.8, 64.1, 58.9, 57.3, 39.4, 31.8, 26.7, 25.9, 24.7, 22.5, 19.6, 19.2, 18.3; HRMS (FAB): calcd for C₄₇H₆₂O₅Si₂ [$ *M*+ Cs⁺] 895.3190, found 895.3221.

Carbonate diol 26: The hydroxyepoxide 24 was treated with lithium aluminum hydride by the same procedure used for the preparation of compound 8. The resulting tetraol was then subjected to the following carbonate formation procedure: Carbonyl diimidazole (395 g, 2.43 mmol) was added to a solution of the crude tetraol (100 mg, 0.243 mmol) in dry acetonitrile (8 mL) at 25 °C and the solution was then refluxed for 2 h. The reaction mixture was worked up by dilution with petroleum ether (20 mL) and washing with cold (0-5 °C) 10% aqueous hydrogen chloride $(3 \times 5 \text{ mL})$; this procedure must be carried out carefully and with TLC monitoring so as to assure complete hydrolysis of the mixed carbonates), aqueous sodium bicarbonate (10 mL), and brine (10 mL). The organic solution was dried over magnesium sulfate and concentrated, and the residue was purified by flash chromatography (silica, ethyl acetate/hexane) to give 26 as a white foam (67 mg, 63%); $R_{f}=0.30$ (silica, 50 % ethyl acetate in hexane); IR (film): $\tilde{v}_{\rm max}=$ 3386, 2901. 1779, 1585, 1464 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.45$ (m, 2 H, Ar), 7.37 (m, 2H, Ar), 7.31 (m, 1H, Ar), 7.23 (m, 1H, Ar), 6.93 (d, J = 8.5 Hz, 1 H, Ar), 6.89 (d, J = 8.5 Hz, 1 H, Ar), 6.12 (s, 1 H, CHCO₂), 5.22 (s, 2 H, CH₂O), 4.66 (dd, J = 13.0, 7.0 Hz, 1 H, CH₂O), 4.52 (dd, J = 13.0, 4.5 Hz, 1 H, CH₂O), 4.32 (dd, J = 11.0, 4.0 Hz, 1 H, CH₂O), 4.17 (dd, J = 11.0, 4.0 Hz, 1H, CH₂O), 2.53 (m, 1H, OH), 2.15 (m, 1H, CH₂), 2.01 (m, 1H, CH₂), 1.92 (m, 1H, CH₂), 1.83 (m, 1H, OH), 1.66 (s, 3H, CH₃C=C), 1.39 (m, 1H, CH₂), 1.36 (s, 3H, CH₃), 1.23 (s, 3H, CH₃); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 158.0, 155.8, 140.9, 136.2, 134.6, 133.9, 130.4, 128.5, 127.9,$ 127.5, 122.1, 121.8, 113.3, 88.0, 78.1, 70.9, 62.6, 58.3, 43.0, 29.4, 23.9, 19.1; HRMS (FAB): calcd for $C_{26}H_{30}O_6 [M + Na^+]$ 461.1940, found 461.1952.

Dialdehyde 27: Same procedure as for the preparation of compound 11 (same scale, yield 71%); white foam; $R_f = 0.50$ (silica, 50% ethyl acetate in hexane); IR (film): $\tilde{v}_{max} = 2981$, 1793, 1672, 1585, 1462, 1264 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.10$ (s, 1 H, HCO), 10.02 (s, 1 H, HCO), 7.53–7.26

(m, 8 H, Ar), 5.28 (s, 1 H, HCOCO₂), 2.35 (m, 1 H, CH₂), 1.99 (s, 3 H, CH₃C=C), 1.98 (m, 1 H, CH₂), 1.80 (m, 1 H, CH₂), 1.60 (m, 1 H, CH₂), 1.44 (s, 3 H, CH₃), 1.42 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 192.8$, 191.9, 158.6, 155.4, 153.1, 137.7, 135.5, 131.0, 128.8, 128.5, 128.4, 127.7, 123.6, 119.0, 88.7, 74.4, 71.5, 41.8, 32.0, 28.5, 23.8, 22.1, 20.6, 18.6, 14.2; HRMS (FAB): calcd for C₂₆H₂₆O₆ [M + Na⁺] 457.1627, found 457.1636.

McMurry product 28: Same procedure as for the preparation of compound **12** (same scale, 39%); white solid; m.p. 190–195 °C (methylene chloride/hexane); $R_f = 0.20$ (silica, 50% ethyl acetate in hexane); IR (film): $\tilde{v}_{max} = 3465$, 2914, 1786, 1581, 1461 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.48$ (m, 2 H, Ar), 7.41 (m, 2 H, Ar), 7.33 (m, 1 H, Ar), 7.25 (m, 2 H, Ar), 6.98 (d, J = 8.0 Hz, 1 H, Ar), 5.61 (s, 1 H, HCOCO₂), 5.16 (d, J = 11.5 Hz, 1 H, HCOH), 5.08 (d, J = 8.5 Hz, 1 H, HCOH), 5.06 (d, J = 11.5 Hz, 1 H, HCOH), 3.50 (brs, 1 H, OH), 2.73 (m, 1 H, CH₂), 2.64 (s, 1 H, OH), 2.32 (m, 1 H, CH₂), 1.82 (m, 1 H, CH₂), 1.56 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 156.1$, 154.4, 142.3, 140.0, 136.4, 130.2, 128.9, 128.6, 127.9, 127.1, 120.5, 118.8, 113.5, 93.1, 79.3, 78.8, 74.8, 71.6, 40.5, 29.4, 26.2, 23.9, 21.0, 20.4; HRMS (FAB): calcd for C₂₆H₂₈O₆ [*M* + Na⁺] 459.1784, found 459.1762.

Benzoate triol 29: Phenyllithium (600 µL, 1.2 mmol of a 2M solution in cyclohexane/ether) was added to a stirred solution of diol 28 (65 mg, 0.197 mmol), and HMPA (500 $\mu L)$ in THF (17 mL) at $-78\,^\circ C.$ The resulting mixture was stirred for 30 min and was then quenched at -78 °C with aqueous ammonium chloride (15 mL). The solution was diluted with ether (50 mL), washed with brine (10 mL), dried over magnesium sulfate, and concentrated. The residue was purified by flash chromatography (silica, ethyl acetatepetroleum ether) to afford **29** as a white solid (64 mg, 80%); $R_f = 0.5$ (silica, 50% ethyl acetate in petroleum ether); IR (film): $\tilde{v}_{max} = 3456, 2945, 1704,$ 1450, 1283 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.05$ (m, 1 H, Ar), 7.58-7.41 (m, 4H, Ar), 7.15 (m, 2H, Ar), 6.31 (s, 1H, HCOBz), 5.41 (d, J = 9.0 Hz, 1 H, HCOH), 4.50 (d, J = 9.0 Hz, 1 H, HCOH), 2.41 (m, 1 H, CH₂C=C), 2.28 (m, 1H, CH₂C=C), 1.84 (m, 1H, CH₂), 1.73 (s, 3H, CH₃C=C), 1.36 (s, 1 H, CH₂), 1.15 (s, 3 H, CH₃), 0.62 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.9, 139.6, 138.5, 138.1, 133.2, 131.4, 129.8,$ 129.5, 128.4, 126.9, 126.5, 124.4, 123.8, 79.7, 79.2, 74.3, 74.1, 41.5, 29.8, 27.2, 26.1, 20.3, 19.6, 14.1; HRMS (FAB): calcd for $C_{25}H_{28}O_5$ [M + Na⁺] 431.1834, found 431.1830.

Monosilylether 31: *tert*-Butyldiphenylsilyl chloride (50.72 g, 184.5 mmol) was added to a solution of diol **30** (31.0 g, 184.5 mmol) and imidazole (18.8 g, 276.7 mmol) in methylene chloride (1 L) at 0 °C. The reaction mixture was stirred at this temperature for 1 h and then washed with aqueous sodium bicarbonate (200 mL). The organic layer was dried over magnesium sulfate, concentrated, and purified by flash chromatography (silica, ether/hexane) to give silyl ether **31** (25.0 g, 33%) as a viscous liquid: $R_f = 0.46$ (silica, 50% ether in hexane); IR (thin film): $\tilde{v}_{max} = 3451$, 2931, 2856, 1588, 1472, 1428, 1390, 1264 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.71$ (m, 4H, Ar), 7.43 (m, 2H, Ar), 7.40 (m, 4H, Ar), 7.23 (t, 1H, J = 8.0 Hz, Ar), 6.85 (d, 1H, J = 8.0 Hz, Ar), 6.89 (d, 1H, J = 8.0 Hz, Ar), 4.81 (s, 2H, CH₂), 3.89 (s, 3H, CH₃), 1.04 (s, 9H, *t*BuSi); ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.8$, 140.0, 135.6, 132.9, 129.9, 128.7, 127.8, 120.9, 110.3, 64.9, 56.4, 26.8; HRMS (FAB): calcd for C₂₅H₃₀O₃Si [M + Na⁺] 429.1873, found 429.1862.

Aldehyde 32: Pyridinium dichromate (35.5 g, 94.48 mmol) was added to a suspension of alcohol 31 (19.2 g, 47.24 mmol) and 4 Å molecular sieves (35 g) in methylene chloride (460 mL) at 0 °C, and the mixture was stirred for 30 min at that temperature and then at 25 °C for an additional 2 h. The solution was filtered through a pad of silica gel (washed with 200 mL of ether), concentrated, and purified by flash chromatography (silica, ether/hexane) to give aldehyde 32 (16.43 g, 86 %) as a colorless solid; $R_f = 0.31$ (silica, 20% ether in hexane); IR (thin film): $\tilde{v}_{max} = 3070$, 2958, 2856, 1681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.3$ (s, 1 H, HCO), 7.69 (m, 5 H, Ar), 7.42 (m, 2 H, Ar), 7.37 (t, 4 H, J = 8.0 Hz, Ar), 6.93 (d, 1 H, J = 8.0 Hz, Ar), 5.18 (s, 2 H, CH₂), 3.89 (s, 3 H, CH₃OAr), 1.14 (s, 9 H, *t*BUSi); ¹³C NMR (125 MHz, CDCl₃): $\delta = 191.6$, 162.8, 145.9, 135.4, 133.4, 129.6, 127.7, 120.9, 117.9, 109.5, 64.1, 55.8, 26.9, 19.3; HRMS (FAB): calcd for C₂₅H₂₈O₃Si [M +Cs⁺] 537.0873, found 537.0862.

Coupled product 33: Same procedure as for the preparation of compound **6** (same scale, 85%); colorless foam; $R_f = 0.45$ (silica, 20% ether in hexane);

IR (film): $\tilde{v}_{max} = 2955$, 2856, 1684, 1583, 1472 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (m, 4H, Ar), 7.41 (m, 2H, Ar), 7.36 (m, 4H, Ar), 7.25 (t, J = 8.0 Hz, Ar), 7.08 (d, J = 8.0 Hz, 1H, Ar), 6.90 (d, J = 8.0 Hz, 1H, Ar), 5.67 (d, J = 10.5 Hz, 1H, HC=C), 5.29 (brs, 1H, HC=C), 4.74 (s, 2H, CH₂O), 4.22 (d, J = 10.5 Hz, 1H, CH₂O), 4.18 (d, J = 10.5 Hz, 1H, OH), 4.17 (d, J = 10.5 Hz, 1H, CH₂O), 3.85 (s, 3H, CH₃OAr), 2.49 (d, J = 19.5 Hz, 1H, CH₂), 2.38 (d, J = 19.5 Hz, 1H, CH₂), 1.70 (s, 3H, CH₃C=C), 1.34 (s, 3H, CH₃), 1.07 (s, 12H, CH₃ and *t*BuSi), 0.92 (s, 9H, *t*BuSi), 0.10 (s, 6H, (CH₃)₂Si); ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.4$, 143.9, 139.2, 136.4, 135.6, 133.2, 129.6, 129.0, 128.7, 127.7, 121.2, 120.6, 110.6, 69.6, 64.1, 58.9, 55.6, 38.9, 33.5, 27.8, 26.8, 26.0, 25.9, 19.2, 19.1, -5.3; HRMS (FAB): calcd for C₄₁H₅₈O₄Si₂ [*M* + Cs⁺] 803.2928, found 803.2956.

Epoxide 34: Same procedure as for the preparation of compound 7 (same scale, 86%); white foam; $R_f = 0.45$ (silica, 20% ether in hexane); IR (film): $\tilde{\nu}_{max} = 3488$, 2929, 2856, 1585, 1472, 1256 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.68$ (m, 4H, Ar), 7.43 (m, 2H, Ar), 7.37 (m, 4H, Ar), 7.26 (m, 1H, Ar), 7.15 (m, 1H, Ar), 6.87 (m, 1H, Ar), 5.59 (d, J = 8.5 Hz, 1H, HCOH), 4.92 (d, J = 13.0 Hz, 1H, CH₂O), 4.74 (d, J = 13.0 Hz, 1H, CH₂O), 4.13 (m, 3H, OH and CH₂O), 3.85 (s, 3H, CH₃OAr), 2.51 (s, 1H, epoxide H), 2.18 (d, J = 19.5 Hz, 1 H, CH₂), 2.06 (d, J = 19.5 Hz, 1 H, CH₂), 1.61 (s, 3H, CH₃C=C), 1.45 (s, 3H, CH₃), 1.12 (s, 3H, CH₃), 1.09 (s, 9H, *t*BuSi), 0.07 (s, 6H, (CH₃)₂Si); ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.9$, 140.0, 135.5, 134.3, 133.0, 129.7, 128.4, 127.7, 125.3, 124.7, 120.3, 110.8, 68.8, 66.1, 64.1, 58.9, 57.5, 56.0, 39.5 Si₂ [M + Na⁺] 709.3721, found 709.3698.

Diol 35: Same procedure as for the preparation of compound **26** (same scale, 61%); white foam; $R_f = 0.45$ (silica, 20% ether in hexanc); IR (film): $\tilde{v}_{max} = 3388$, 2916, 1586, 1468, 1266 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.34$ (t, J = 8.0 Hz, 1 H, Ar), 6.95 (d, J = 8.0 Hz, 1 H, Ar), 6.91 (d, J = 8.0 Hz, 1 H, Ar), 6.07 (s, 1 H, HCOCO₂), 4.64 (dd, J = 13.0, 7.0 Hz, 1 H, CH₂OH), 4.31 (dd, J = 11.5, 4.0 Hz, 1 H, CH₂OH), 4.15 (dd, J = 11.5, 4.5 Hz, 1 H, CH₂OH), 2.36 (m, 1 H, OH), 2.11 (m, 1 H, CH₂C=C), 1.96 (m, 1 H, CH₂C=C), 1.34 (s, 3 H, CH₃), 1.29 (m, 1 H, CH₂), 1.20 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 159.7$, 156.5, 143.4, 138.6, 135.9, 133.1, 131.5, 126.3, 122.3, 112.5, 88.9, 78.8, 62.1, 58.4, 56.2, 43.7, 30.7, 29.9, 24.7, 19.3; HRMS (FAB): calcd for C₂₀H₂₆O₆ [$M + H^+$] 385.1627, found 385.1635.

Dialdehyde 36: Same procedure as for the preparation of compound 11 (same scale, 69%); white foam; $R_f = 0.45$ (silica, 20% ether in hexane); IR (film): $\tilde{v}_{max} = 2982, 1790, 1668, 1470 \text{ cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.09$ (s, 1 H, HCO), 10.03 (s, 1 H, HCO), 7.63 (t, J = 8.0 Hz, 1 H, Ar), 7.28 (d, J = 8.0 Hz, 1 H, Ar), 7.09 (s, 1 H, HCOCO₂), 3.92 (s, 3 H, CH₃OAr), 2.34 (m, 1 H, CH₂C=C), 1.97 (s, 3 H, CH₂C=C), 1.86 (m, 1 H, CH₂C=C), 1.75 (m, 1 H, CH₂), 1.55 (m, 1 H, CH₂), 1.42 (s, 3 H, CH₃), 1.41 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 192.8, 191.8, 159.6, 155.5, 153.1, 137.6, 135.4, 131.2, 128.4, 123.4, 117.7, 88.6, 74.5, 56.3, 41.7, 32.0, 23.7, 21.9, 20.9, 18.5; HRMS (FAB): calcd for C₂₀H₂₀O₆ [<math>M$ + Na⁺] 359.1495, found 359.1489.

McMurry product 37: Same procedure as for the preparation of compound **12** (same scale, 37%); white foam; $R_f = 0.45$ (silica, 20% ether in hexane); IR (film): $\tilde{v}_{max} = 3441, 2937, 1790, 1463 \text{ cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.45$ (d, J = 7.5 Hz, 1 H, Ar), 7.27 (t, J = 8.0 Hz, 1 H, Ar), 6.92 (d, J = 8.0 Hz, 1 H, Ar), 5.62 (s, 1 H, HCOCO₂), 5.08 (dd, J = 9.0, 2.0 Hz, 1 H, HCOH), 4.62 (dd, J = 9.0, 2.5 Hz, 1 H, HCOH), 3.86 (s, 3 H, CH₃OAr), 2.94 (d, J = 2.0 Hz, 1 H, OH), 2.77 (m, 1 H, CH₂C=C), 2.52 (d, J = 2.5 Hz, 1 H, OH), 2.78 (m, 1 H, CH₂C=C), 1.91 (m, 1 H, CH₂), 1.62 (s, 3 H, CH₃C=C), 1.43 (m, 1 H, CH₂), 1.21 (s, 3 H, CH₂), 0.80 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.3, 154.6, 140.0, 130.3, 129.0, 120.1, 118.5, 112.3, 93.1, 79.4, 78.8, 74.8, 56.6, 40.6, 29.5, 26.2, 23.9, 21.0, 20.5; HRMS (FAB): calcd for C₂₀H₂₄O₆ [<math>M + Na^+$] 383.1471, found 383.1465.

Benzoate diol 38: Same procedure as for the preparation of compound **13** (same scale, 78%); white foam; $R_f = 0.45$ (silica, 20% ether in hexane); IR (film): $\tilde{v}_{max} = 3448$, 2963, 1702, 1582, 1459, 1288 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.06$ (d, J = 8.0 Hz, 2H, Ar), 7.52 (m, 1H, Ar), 7.40 (m, 3 H, Ar), 7.07 (t, J = 7.5 Hz, 1H, Ar), 6.78 (d, J = 8.0 Hz, 1H, Ar), 6.25 (s, 1H, HCOBz), 5.37 (d, J = 9.0 Hz, 1H, HCOH), 4.42 (d, J = 9.0 Hz, 1H,

HCOH), 3.79 (s, 3H, CH₃OAr), 2.85 (m, 1H, CH₂C=C), 2.30 (s, 1H, CH₂C=C), 1.77 (m, 1H, CH₂), 1.67 (s, 3H, CH₃C=C), 1.48 (m, 1H, CH₂), 1.13 (s, 3H, CH₃), 0.61 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.4, 156.6, 142.4, 138.6, 132.9, 131.5, 130.3, 129.8, 128.2, 127.2, 126.6, 117.8, 110.9, 79.7, 79.6, 74.5, 74.4, 60.4, 55.8, 42.2, 30.2, 27.2, 20.2, 19.8; HRMS (FAB): calcd for C₂₆H₃₀O₆ [$ *M*+ Cs⁺] 571.1097, found 571.1086.

Benzoate diacetate 39: Same procedure as for the preparation of compound 14 (same scale, 97%); colorless solid; $R_f = 0.52$ (silica, 50% ethyl acetate in hexane); IR (film): $\bar{v}_{max} = 3460$, 2920, 1738, 1462, 1372, 1240 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.08$ (d, J = 8.0 Hz, 2H, Ar), 7.52 (m, 1H, Ar), 7.41 (dd, J = 8.0, 8.0 Hz, 2H, Ar), 7.18 (m, 1H, Ar), 7.07 (dd, J = 8.0, 8.0 Hz, 1H, Ar), 6.80 (d, J = 7.5 Hz, 1H, Ar), 6.64 (d, J = 10.0 Hz, 1H, HCOAc), 6.35 (s, 1H, HCOBz), 5.68 (d, J = 10.0 Hz, 1H, HCOAc), 3.77 (s, 3H, CH₃OAr), 2.85 (m, 1H, CH₂C=C), 2.60 (s, 1H, OH), 2.30 (m, 1H, CH₂C=C), 2.17 (s, 3H, OAc), 2.10 (s, 3H, OAc), 1.78 (m, 1H, CH₂), 1.06 (s, 3H, CH₃), 0.79 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.1$, 169.3, 165.5, 156.6, 141.5, 138.3, 132.6, 130.0, 129.5, 128.3, 128.0, 127.3, 126.7, 117.5, 111.5, 79.1, 76.5, 73.9, 72.3, 55.6, 41.7, 30.0, 27.0, 21.0, 20.7, 19.8, 19.6; HRMS (FAB): calcd for C₃₀H₃₄O₈ [M + Cs⁺] 655.1308, found 655.1323.

Enone 40: Same procedure as for the preparation of compound **15** (25 mg scale, 53%); colorless solid; $R_f = 0.44$ (silica, 50% ethyl acetate in hexane); IR (film): $\tilde{v}_{max} = 3506$, 2995, 1747 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.08$ (m, 2 H, Ar), 7.56 (m, 1 H, Ar), 7.44 (m, 2 H, Ar), 7.21 (m, 1 H, Ar), 7.11 (m, 2 H, Ar), 6.48 (s, 1 H, HCNHBz), 5.78 (d, J = 10.0 Hz, 1 H, HCOAc), 3.72 (s, 3 H, CH₃OAr), 3.71 (d, J = 20.0 Hz, 1 H, CH₂), 2.87 (s, 1 H, OH), 2.72 (d, J = 20.0 Hz, 1 H, CH₃), 1.05 (s, 3 H, OAc), 2.15 (s, 3 H, OAc), 1.75 (s, 3 H, CH₃), 1.20 (s, 3 H, CH₃), 1.05 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 199.0$, 170.5, 170.2, 169.4, 150.1, 140.1, 137.3, 134.4, 133.3, 129.9, 128.4, 126.0, 120.0, 118.2, 1129, 111.2, 77.9, 73.7, 72.2, 71.4, 56.0, 44.4, 35.7, 31.7, 24.2, 20.7, 19.5, 12.5; HRMS (FAB): calcd for C₃₀H₃₂O₉ [*M* + Cs⁺] 669.1101, found 669.1132.

Alcohol 41: Same procedure as for the preparation of compound 16 (10 mg scale, 43 %); white foam; $R_f = 0.30$ (silica, 50% ethyl acetate in hexane); IR (film): $\tilde{v}_{max} = 3510, 2928, 1716 \text{ cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.09$ (m, J = 8.0 Hz, 2 H, Ar), 7.53 (m, 1 H, Ar), 7.40 (m, 2 H, Ar), 7.15 (m, 1 H, Ar), 6.68 (d, J = 10.0 Hz, 1 H, HCOAc), 6.35 (s, 1 H, HCNHBz), 5.75 (d, J = 10.0 Hz, 1 H, HCOAc), 4.39 (brm, 1 H, HCOH), 3.77 (s, 3 H, CH₃OAr), 2.90 (dd, J = 15.0, 3.5 Hz, 1 H, CH₂), 2.64 (s, 1 H, OH), 2.50 (dd, J = 15.0, 10.5 Hz, 1 H, CH₃), 0.99 (s, 3 H, CH₃), 1.30 (s, 3 H, CH₃), 0.99 (s, 3 H, CH₃), 1.31.0, 129.7, 128.7, 128.3, 128.2, 127.1, 118.7, 118.1, 112.9, 112.1, 74.7, 72.6, 69.8, 68.2, 56.2, 56.3, 42.4, 40.1, 27.1, 21.3, 21.0, 20.1, 15.0; HRMS (FAB): calcd for C₃₀H₃₄O₉ [$M + Cs^+$] 671.1257, found 671.1268.

Coupled product 42: Same procedure as for the preparation of compound **18** (5 mg scale, 37%); colorless solid; $R_f = 0.41$ (silica, 80% ether in hexane); $[x]_{\rm D}^{22} = -15.91$ (c 0.22, CHCl₃); IR (film): $\tilde{v}_{\rm max} = 3510, 2928, 1716 \,{\rm cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.13$ (m, 2H, Ar), 7.84 (m, 2H, Ar), 7.54-7.15 (m, 14H, Ar), 7.03 (m, 1H, NH), 6.74 (d, $J = 10.0 \,{\rm Hz}$, 1H, HCOAc), 6.37 (s, 1H, HCOBz), 5.91 (dd, $J = 11.0, 5.0 \,{\rm Hz}$, 1H, HCCHEC), 5.83 (d, $J = 10.0 \,{\rm Hz}$, 1H, HCOAc), 5.55 (d, $J = 8.0 \,{\rm Hz}$, 1H, HCOHBz), 4.34 (d, $J = 1.5 \,{\rm Hz}$, HCOTES), 3.81 (s, 3H, CH₃OAr), 3.25 (s, 1H, OH), 3.10 (dd, $J = 15.0, 5.0 \,{\rm Hz}$, 1H, CH₂), 2.32 (dd, $J = 15.0, 11.0 \,{\rm Hz}$, 1H, CH₂), 2.20 (s, 3H, OAc), 2.12 (s, 3H, OAc), 1.70 (s, 3H, CH₃), 1.07 (s, 3H, CH₃), 0.92 (s, 3H, CH₃), 0.71 (t, $J = 8.0 \,{\rm Hz}, 0 \,{\rm Hc}, 25, 77.1, 75.5, 74.9, 72.8, 71.7, 71.2, 65.9, 58.6, 55.9, 43.7, 37.2, 26.2, 20.9, 20.6, 14.7, 6.8, 4.6; HRMS (FAB): calcd for C₅₂H₆₁O₁₂NSi [<math>M + Cs^+$] 1052.3017, found 1052.3038.

Coupled product 42': Colorless solid; $R_f = 0.41$ (silica, 80 % ether in hexane); $[\alpha]_D^{22} = -12.38$ (c 0.21, CHCl₃); IR (film): $\tilde{v}_{max} = 3404$, 2943, 1790, 1727 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.10$ (m, 2H, Ar), 7.68 (m, 2H, Ar), 7.54–7.27 (m, 13 H, Ar), 7.08 (m, 1H, Ar), 6.99 (d, J = 8.5 Hz, 1 H, NH), 6.68 (d, J = 10.0 Hz, 1 H, HCOAc), 6.39 (s, 1 H, HCOBz), 5.80 (d, J = 10.0 Hz, 1 H, HCOAc), 5.75 (m, 1 H, HCC=C), 5.18 (d, J = 8.5 Hz, 1 H, HCNHBz), 4.34 (s, 1 H, HCOTES), 3.72 (s, 3 H, CH₃OAr), 2.95 (dd, $J = 15.0, 3.5 \text{ Hz}, 1 \text{ H}, \text{ CH}_2), 2.76 \text{ (s, 1 H, OH)}, 2.48 \text{ (dd, } J = 15.0, 10.5 \text{ Hz}, 1 \text{ H}, \text{ CH}_2), 2.19 \text{ (s, 3 H, OAc)}, 2.08 \text{ (s, 3 H, OAc)}, 1.67 \text{ (s, 3 H, CH}_3), 1.04 \text{ (s, 3 H, CH}_3), 0.95 \text{ (s, 3 H, CH}_3), 0.80 \text{ (t, } J = 6.0 \text{ Hz}, 9 \text{ H}, \text{ CH}_3\text{ CH}_2\text{Si}), 0.42 \text{ (m, 6H, CH}_3\text{CH}_2\text{Si}); ^{13}\text{C}} \text{ NMR} (125 \text{ MHz}, \text{C}_6\text{D}_6): \delta = 170.4, 170.1, 169.6, 166.3, 165.6, 156.7, 139.4, 139.3, 138.6, 134.1, 133.1, 131.7, 131.6, 130.0, 129.9, 128.6, 128.5, 128.4, 127.7, 127.0, 126.8, 126.4, 118.8, 113.2, 75.4, 74.7, 72.6, 71.1, 56.6, 56.0, 43.0, 37.1, 27.0, 21.0, 20.3, 15.7, 6.5, 4.3; \text{HRMS (FAB): calcd for C}_{52}\text{H}_{61}\text{O}_{12}\text{NSi} [M + \text{Cs}^+] 1052.3017, found 1052.3059.}$

Deprotected product 2c: Same procedure as for the preparation of compound **2a** (5 mg scale, 89%); colorless solid; $R_f = 0.32$ (silica, 80% ether in hexane); $[\alpha]_D^{22} = 3.00$ (*c* 0.40, CHCl₃); 1R (film): $\tilde{v}_{max} = 3416$, 1730, 1644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.10$ (d, J = 8.0 Hz, 2H, Ar), 7.79 (d, J = 8.0 Hz, 2H, Ar), 7.54–7.13 (m, 14 H, Ar), 6.89 (d, J = 9.5 Hz, 1 H, NH). 6.69 (d, J = 10.0 Hz, 1 H, HCOAc), 6.33 (s, 1 H, HCNHBz), 5.72 (d, J = 10.0 Hz, 1 H, HCOAc), 5.67 (m, 1 H, HCC=C), 5.63 (m, 1 H, HCNHBz), 4.56 (brs, 1 H, HCOH), 3.72 (s, 3 H, CH₃OAr), 3.07 (dd, J = 15.0, 4.0 Hz, 1 H, CH₂), 2.10 (s, 3 H, OAc), 1.16 (s, 3 H, CH₃), 1.04 (s, 3 H, CH₃), 0.54 (s, 3 H, CH₃); 1³C NMR (125 MHz, C₆ D_6); $\delta = 171.3$, 170.4, 169.4, 166.6, 165.4, 158.8, 138.2, 137.9, 133.9, 133.2, 132.6, 131.9, 129.9, 128.8, 128.7, 128.3, 128.2, 127.0, 126.9, 126.8, 118.3, 113.3, 74.5, 73.5, 72.5, 72.4, 56.8, 54.9, 42.9, 36.9, 26.9, 21.1, 20.9, 20.2, 14.7; HRMS (FAB): calcd for C₄₆H₄₇O₁₂N [M + Cs⁺] 938.2153, found 938.2171.

Deprotected product 2c': Colorless solid; $R_f = 0.23$ (silica, 80% ether in hexane); $[\alpha]_D^{22} = 18.50$ (*c* 0.40, CHCl₃); IR (film): $\tilde{v}_{max} = 2917$, 1714, 1238 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); $\delta = 8.07$ (d, J = 7.0 Hz, 2 H, Ar), 7.68 (d, J = 7.0 Hz, 2 H, Ar), 7.57–7.25 (m, 13 H, Ar), 6.87 (m, 2 H, Ar and NH), 6.88 (d, J = 10.5 Hz, 1 H, HCOAc), 6.35 (s, 1 H, HCOBz), 5.78 (d, J = 10.5 Hz, 1 H, HCOAc), 5.65 (m, 1 H, HCC=C), 5.36 (m, 1 H, HCNHBz), 4.42 (brs, 1 H, HCOTES), 3.61 (s, 3 H, CH₃OAr), 3.35 (brs, 1 H, OH), 2.93 (dd, J = 15.5, 3.5 Hz, 1 H, CH₂), 2.75 (brs, 1 H, OH), 2.50 (dd, J = 15.0, 10.5 Hz, 1 H, CH₂), 2.19 (s, 3 H, OAc), 2.10 (s, 3 H, OAc), 1.66 (s, 3 H, CH₃), 1.04 (s, 3 H, CH₃), 0.98 (s, 3 H, CH₃); ¹³C NMR (125 MHz, C₆D₆): $\delta = 172.1$, 170.2, 169.5, 166.6, 165.4, 156.6, 138.9, 138.5, 133.9, 133.4, 133.2, 132.6, 131.8, 129.9, 129.8, 128.9, 128.6, 128.4, 128.1, 127.0, 126.7, 118.7, 113.2, 74.5, 73.5, 73.1, 72.4, 56.6, 54.8, 42.7, 37.3, 27.2, 21.0, 20.1, 15.5; HRMS (FAB): calcd for C₄₆H₄₇O₁₂N [$M + Cs^+$] 938.2153, found 938.2175.

Acknowledgments: This work was financially supported by the Skaggs Institute of Chemical Biology, the Scripps Research Institute, the National Institutes of Health (USA), and the NSERC (M. H. D. P.).

Received: September 9, 1996 [F 460]

- [1] M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggen, A. T. McPhail, J. Am. Chem. Soc. 1971, 93, 2325.
- [2] K. C. Nicolaou, W.-M. Dai, R. K. Guy, Angew. Chem. Int. Ed. Engl. 1994, 33. 15; Angew. Chem. 1994, 106, 38.
- [3] S. B. Horwitz, Trends Pharmacol. Sci. 1992, 13, 134.
- [4] a) P. B. Schiff, S. B. Horwitz, Proc. Natl. Acad. Sci. USA 1980, 77, 1561;
 b) M. De Brabander, G. Geuens, R. Nuydens, R. Willebroards, J. De May, Cell Biol. Int. Rep. 1981, 5, 913; c) Cold Spring Harbor Symp. Quant. Biol. 1982, 46, 219; d) J. J. Manfredi, J. Parness, S. B. Horwitz, J. Cell Biol. 1982, 94, 688; e) G. Schatten, H. Schatten, T. H. Bestor, R. J. Balczon, J. Cell Biol. 1982, 94, 455; f) B. Herman, M. A. Langerin, Eur. J. Cell Biol. 1983, 31, 034; g) J. Jole-Bajer, A. S. Bajer, J. Cell. Biol. 1983, 96, 527; h) J. J. Manfredi, S. B. Horwitz, Pharmacol. Ther. 1984, 25, 83.
- [5] a) F. Guéritte-Voegelein, D. Guénard, J. Dubois, A. Wahl, R. Marder, R. Müller, M. Lund, L. Bricard, P. Potier, in *Taxane Anticancer Agents, Basic Science and Current Status* (Eds.: G. I. Georg, T. T. Chen, I. Ojima, D. M. Vyas), *ACS Symp. Ser.* **1994**, 583, 189, ACS, Washington DC; b) D. G. I. Kingston, *ibid.*, p. 203; c) G. I. Georg, G. C. B. Harriman, D. G. V. Velde, T. C. Boge, Z. S. Cheruvallath, A. Datta, M. Hepperle, H. Park, R. H. Himes, L. Jayasinghe, *ibid.*, p. 217; d) A. Commerçon, J. D. Bourzat, E. Didier, F. Lavelle, *ibid.*, p. 233; e) S.-H Chen, V. F. Farina, *ibid.*, p. 247; f) I. Ojima, Y. H. Park, I. Fenoglio, O. Duclos, C.-M. Sun, S. D. Kuduk, M. Zucco, G. Appendino, P. Pera, J. M. Veith, R. J. Bernacki, M.-C. Bissery, C. Combeau, P. Vrignaud, J. F. Riou, F. Lavelle, *ibid.*, p. 262; g) L. L. Klein, L. Li, C. M. Yeung, C. J. Maring, S. A. Thomas, D. J. Grampovnik, J. J. Plattner, *ibid.*, p. 276.
- [6] K. C. Nicolaou, J. Renaud, P. G. Nantermet, E. A. Couladouros, R. K. Guy, W. Wrasidlo, J. Am. Chem. Soc. 1995, 117, 2409 and references cited therein.

- [7] a) F. Gueritte-Voegelein, D. Guenard, F. Lavelle, M.-T. Le Goff, L. Mangatal, P. Potier, J. Med. Chem. 1991, 34, 992; b) A. E. Mathew, M. R. Mejillano, J. P. Nath, R. H. Himes, V. Stella, *ibid.* 1992, 35, 145; c) H. Lataste, V. Senilh, M. Wright, D. Guenard, P. Potier, Proc. Natl. Acad. Sci. USA 1984, 81, 4090; d) H. M. Deutsch, J. A. Glinski, M. Hernandez, R. D. Haugwitz, V. L. Narayanan, M. Suffness, L. H. Zalkow, J. Med. Chem. 1989, 32, 788.
- [8] L. L. Klein, C. J. Maring, L. Li, C. M. Yeung, S. A. Thomas, D. J. Grampovnik, J. J. Plattner, 207th National Meeting of the American Chemical Society, San Diego, CA, ACS, Washington DC, 1994, MEDI 143.
- [9] a) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensen, *Nature* 1994, 367, 630; b) K. C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen, J. Am. Chem. Soc. 1995, 117, 624; c) K. C. Nicolaou, J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K. Hwang, M. Nakada, P. G. Nantermet, *ibid.* 1995, 117, 634; d) K. C. Nicolaou, Z. Yang, J.-J. Liu, P. G. Nantermet, C. F. Claiborne, J. Renaud, R. K. Guy, K. Shibayama, *ibid.* 1995, 117, 645; e) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G. Nantermet, Z. Yang, J. Renaud, K. Paulvannan, R. Chadha, *ibid.* 1995, 117, 653.
- [10] R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu, *J. Am. Chem. Soc.* **1994**, *116*, 1597; R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu, *ibid.* **1994**, *116*, 1598.
- [11] a) J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young, S. J. Danishefsky, Angew. Chem. Int. Ed. Engl. 1995, 34, 1723; Angew. Chem. 1995, 107, 1883;
 b) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J. Am. Chem. Soc. 1996, 118, 2843.
- [12] a) D. G. I. Kingston, *Pharmacol. Ther.* **1991**, *52*, 1; b) G. Samaraanayake, N. F. Magri, C. Jitrangsri, D. G. I. Kingston, *J. Org. Chem.* **1991**, *56*, 5114.
- [13] M. Suffness, Annu. Rep. Med. Chem. 1993, 28, 305.
- [14] a) Y. Horiguchi, T. Furukawa, I. Kuwajima, J. Am. Chem. Soc. 1989, 111, 8277; b) T. Furukawa, K. Morihira, Y. Horiguchi, I. Kuwajima, Tetrahedron 1992, 48, 6975; c) Y. Kataoka, Y. Nakamura, K. Morihira, H. Arai, Y. Horiguchi, I. Kuwajima, Tetrahedron Lett. 1992, 33, 6979; d) P. A. Wender, T. P. Mucciaro, J. Am. Chem. Soc. 1992, 114, 5878; c) K. J. Shea, P. D. Davis,

Angew. Chem. Int. Ed. Engl. 1983, 22, 419; Angew. Chem. 1983, 95, 422-423; Angew. Chem. Suppl. 1983, 564; f) K. J. Shea, J. W. Gilman, C. D. Haffner, T. K. Dougherty, J. Am. Chem. Soc. 1986, 108, 4953; g) K. J. Shea, C. D. Haffner, Tetrahedron Lett. 1988, 29, 1367; h) K. J. Shea, S. T. Sakata, *ibid*. 1992, 33, 4261; i) C. S. Swindell, W. Fan, P. G. Klimko, *ibid*. 1994, 35, 4959.

- [15] K. C. Nicolaou, C.-K. Hwang, E. J. Sorenson, J. Chem. Soc. Chem. Commun. 1992, 16, 1117.
- [16] a) R. H. Shapiro, Org. React. 1976, 23, 405; b) A. R. Chamberlin, S. H. Bloom, *ibid.* 1990, 39, 1; c) S. F. Martin, D. Daniel, R. J. Cherney, S. Liras, J. Org. Chem. 1992, 57, 2523.
- [17] a) J. E. McMurry, Chem. Rev. 1989, 89, 1513; b) J. E. McMurry, J. G. Rico, T. C. Leckta, J. Org. Chem. 1989, 54, 3748; c) J. E. McMurry, J. G. Rico, Tetrahedron Lett. 1989, 30, 1169; d) see also: A. S. Kende, S. Johnson, P. San Filippo, J. C. Hodges, L. N. Jungheim, J. Am. Chem. Soc. 1986, 108, 3513.
- [18] K. C. Nicolaou, C. F. Claiborne, E. A. Couladouros, P. G. Nantermet, E. J. Sorensen, J. Am. Chem. Soc. 1994, 116, 1591.
- [19] a) K. B. Sharpless, R. C. Michaelson, J. Am. Chem. Soc. 1973, 95, 6136;
 b) K. B. Sharpless, T. R. Verhoeven, Aldrichim. Acta 1979, 12, 63.
- [20] W. P. Griffith, S. V. Ley, Aldrichim. Acta 1990, 23, 13.
- [21] R. A. Holton, European Patent Application EP 400971, 1990; Chem. Abstr. 1990, 114, 164568q.
- [22] I. Ojima, C. M. Sun, M. Zucco, Y. H. Park, O. Duclos, S. Kuduk, *Tetrahedron Lett.* **1993**, *34*, 4149; I. Ojima, I. Habus, M. Zucco, Y. M. Park, C. M. Sun, T. Brigaud, *Tetrahedron* **1992**, *48*, 6985. We thank Professor Ojima for a generous gift of β-lactam **17**.
- [23] We thank Dr. W. Wrasidlo for these biological assays.
- [24] K. C. Nicolaou, R. K. Guy, E. N. Pitsinos, W. Wrasidlo, Angew. Chem. Int. Ed. Engl. 1994, 33, 1583; Angew Chem. 1994, 106, 1672.
- [25] a) D. G. Vander Velde, G. I. Georg, G. L. Grunewald, C. W. Gunn, L. A. Mitscher, J. Am. Chem. Soc. 1993, 115, 11650; b) J. Dubois, D. Guénard, F. Guéritte-Voegelin, N. Guedira, P. Potier, B. Gillet, J.-C. Beloeil, Tetrahedron 1993, 49, 6533; c) H. J. Williams, A. I. Scott, R. A. Dieden, C. S. Swindell, L. E. Chirlian, M. M. Francl, J. M. Heerding, N. E. Krauss, Tetrahedron 1993, 49, 6545; d) L. Gomez-Paloma, R. K. Guy, W. Wrasidlo, K. C. Nicolaou, Chem. Biol. 1994, 1, 107.
- [26] R. M. DeMarinis, A. J. Krog, D. H. Shah, J. Lafferty, K. G. Holden, J. P. Hieble, W. D. Matthews, J. W. Regan, R. J. Lefkowitz, M. G. Caron, J. Med. Chem. 1984, 27, 918.